為了能幫助廣大學生朋友們提高成績和思維能力,數學網初中頻道特地為大家整理了中考數學考前必做試題,希望能夠切實的幫到大家,同時祝大家學業進步!
一、選擇題
1、(濟寧第8題)如果二次函數y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數根.請根據你對這句話的理解,解決下面問題:若m、n(m
A. m
【考點】: 拋物線與x軸的交點.
【分析】: 依題意畫出函數y=(x?a)(x?b)圖象草圖,根據二次函數的增減性求解.
【解答】: 解:依題意,畫出函數y=(x?a)(x?b)的圖象,如圖所示.
函數圖象為拋物線,開口向上,與x軸兩個交點的橫坐標分別為a,b(a
方程1?(x?a)(x?b)=0轉化為(x?a)(x?b)=1,方程的兩根是拋物線y=(x?a)(x?b)與直線y=1的兩個交點.
由拋物線開口向上,則在對稱軸左側,y隨x增大而減少
故選A.
【點評】: 本題考查了二次函數與一元二次方程的關系,考查了數形結合的數學思想.解題時,畫出函數草圖,由函數圖象直觀形象地得出結論,避免了繁瑣復雜的計算.
2、(山東泰安第20題)二次函數y=ax2+bx+c(a,b,c為常數,且a0)中的x與y的部分對應值如下表:
X ?1 0 1 3
y ?1 3 5 3
下列結論:
(1)ac
(2)當x1時,y的值隨x值的增大而減小.
(3)3是方程ax2+(b?1)x+c=0的一個根;
(4)當?10.
其中正確的個數為()
A.4個 B. 3個 C. 2個 D. 1個
【分析】:根據表格數據求出二次函數的對稱軸為直線x=1.5,然后根據二次函數的性質對各小題分析判斷即可得解.
【解答】:由圖表中數據可得出:x=1時,y=5值最大,所以二次函數y=ax2+bx+c開口向下,a又x=0時,y=3,所以c=30,所以ac0,故(1)正確;
∵二次函數y=ax2+bx+c開口向下,且對稱軸為x= =1.5,當x1.5時,y的值隨x值的增大而減小,故(2)錯誤;
∵x=3時,y=3,9a+3b+c=3,∵c=3,9a+3b+3=3,9a+3b=0,3是方程ax2+(b?1)x+c=0的一個根,故(3)正確;
∵x=?1時,ax2+bx+c=?1,x=?1時,ax2+(b?1)x+c=0,∵x=3時,ax2+(b?1)x+c=0,且函數有最大值,當?10,故(4)正確.
故選B.
【點評】:本題考查了二次函數的性質,二次函數圖象與系數的關系,拋物線與x軸的交點,二次函數與不等式,有一定難度.熟練掌握二次函數圖象的性質是解題的關鍵.
3、(山東煙臺第11題)二次函數y=ax2+bx+c(a0)的部分圖象如圖,圖象過點(?1,0),對稱軸為直線x=2,下列結論:
①4a+b=0;②9a+c③8a+7b+2c④當x?1時,y的值隨x值的增大而增大.
其中正確的結論有()
A.1個 B. 2個 C. 3個 D. 4個
【分析】:根據拋物線的對稱軸為直線x=? =2,則有4a+b=0;觀察函數圖象得到當x=?3時,函數值小于0,則9a?3b+c0,即9a+c由于x=?1時,y=0,則a?b+c=0,易得c=?5a,所以8a+7b+2c=8a?28a?10a=?30a,再根據拋物線開口向下得a0,于是有8a+7b+2c由于對稱軸為直線x=2,根據二次函數的性質得到當x2時,y隨x的增大而減小.
【解答】:∵拋物線的對稱軸為直線x=? =2,b=?4a,即4a+b=0,所以①正確;
∵當x=?3時,y0,9a?3b+c0,即9a+c3b,所以②錯誤;
∵拋物線與x軸的一個交點為(?1,0),a?b+c=0,
而b=?4a,a+4a+c=0,即c=?5a,8a+7b+2c=8a?28a?10a=?30a,
∵拋物線開口向下,a0,8a+7b+2c0,所以③正確;
∵對稱軸為直線x=2,
當?12時,y隨x的增大而減小,所以④錯誤.故選B.
【點評】:本題考查了二次函數圖象與系數的關系:二次函數y=ax2+bx+c(a0),二次項系數a決定拋物線的開口方向和大小,當a0時,拋物線向上開口;當a0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置,當a與b同號時(即ab0),對稱軸在y軸左; 當a與b異號時(即ab0),對稱軸在y軸右;常數項c決定拋物線與y軸交點. 拋物線與y軸交于(0,c);拋物線與x軸交點個數由△決定,△=b2?4ac0時,拋物線與x軸有2個交點;△=b2?4ac=0時,拋物線與x軸有1個交點;△=b2?4ac0時,拋物線與x軸沒有交點.
4、(威海第11題)已知二次函數y=ax2+bx+c(a0)的圖象如圖,則下列說法:
①c=0;②該拋物線的對稱軸是直線x=?1;③當x=1時,y=2a;④am2+bm+a?1).
其中正確的個數是( )
A. 1 B. 2 C. 3 D. 4
【考點】: 二次函數圖象與系數的關系.
【分析】: 由拋物線與y軸的交點判斷c與0的關系,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.
【解答】: 解:拋物線與y軸交于原點,c=0,故①正確;
該拋物線的對稱軸是: ,直線x=?1,故②正確;
當x=1時,y=2a+b+c,
∵對稱軸是直線x=?1,
,b=2a,
又∵c=0,
y=4a,故③錯誤;
x=m對應的函數值為y=am2+bm+c,
x=?1對應的函數值為y=a?b+c,又x=?1時函數取得最小值,
a?b+c
∵b=2a,
am2+bm+a?1).故④正確.
故選:C.
【點評】: 本題考查了二次函數圖象與系數的關系.二次函數y=ax2+bx+c(a0)系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數確定.
5、(寧波第12題)已知點A(a?2b,2?4ab)在拋物線y=x2+4x+10上,則點A關于拋物線對稱軸的對稱點坐標為( )
A. (?3,7) B. (?1,7) C. (?4,10) D. (0,10)
【考點】: 二次函數圖象上點的坐標特征;坐標與圖形變化-對稱.
【分析】: 把點A坐標代入二次函數解析式并利用完全平方公式整理,然后根據非負數的性質列式求出a、b,再求出點A的坐標,然后求出拋物線的對稱軸,再根據對稱性求解即可.
【解答】: 解:∵點A(a?2b,2?4ab)在拋物線y=x2+4x+10上,
(a?2b)2+4(a?2b)+10=2?4ab,
a2?4ab+4b2+4a?8ab+10=2?4ab,
(a+2)2+4(b?1)2=0,
a+2=0,b?1=0,
解得a=?2,b=1,
a?2b=?2?21=?4,
2?4ab=2?4(?2)1=10,
點A的坐標為(?4,10),
∵對稱軸為直線x=? =?2,
點A關于對稱軸的對稱點的坐標為(0,10).
故選D.
【點評】: 本題考查了二次函數圖象上點的坐標特征,二次函數的對稱性,坐標與圖形的變化?對稱,把點的坐標代入拋物線解析式并整理成非負數的形式是解題的關鍵.
6、(溫州第10題)如圖,矩形ABCD的頂點A在第一象限,AB∥x軸,AD∥y軸,且對角線的交點與原點O重合.在邊AB從小于AD到大于AD的變化過程中,若矩形ABCD的周長始終保持不變,則經過動點A的反比例函數y= (k0)中k的值的變化情況是()
A. 一直增大 B. 一直減小 C. 先增大后減小 D. 先減小后增大
【考點】: 反比例函數圖象上點的坐標特征;矩形的性質.
【分析】: 設矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周長始終保持不變,則a+b為定值.根據矩形對角線的交點與原點O重合及反比例函數比例系數k的幾何意義可知k= AB AD=ab,再根據a+b一定時,當a=b時,ab最大可知在邊AB從小于AD到大于AD的變化過程中,k的值先增大后減小.
【解答】: 解:設矩形ABCD中,AB=2a,AD=2B.
∵矩形ABCD的周長始終保持不變,
2(2a+2b)=4(a+b)為定值,
a+b為定值.
∵矩形對角線的交點與原點O重合
k= AB AD=ab,
又∵a+b為定值時,當a=b時,ab最大,
在邊AB從小于AD到大于AD的變化過程中,k的值先增大后減小.
故選C.
【點評】: 本題考查了矩形的性質,反比例函數比例系數k的幾何意義及不等式的性質,有一定難度.根據題意得出k= AB AD=ab是解題的關鍵.
7、(山東泰安第17題)已知函數y=(x?m)(x?n)(其中m
A.m+n B m+nC.m-nD.m-n0
【分析】: 根據二次函數圖象判斷出m?1,n=1,然后求出m+n0,再根據一次函數與反比例函數圖象的性質判斷即可.
【解答】:由圖可知,m?1,n=1,所以,m+n0,
所以,一次函數y=mx+n經過第二四象限,且與y軸相交于點(0,1),
反比例函數y= 的圖象位于第二四象限,
縱觀各選項,只有C選項圖形符合.故選C.
【點評】:本題考查了二次函數圖象,一次函數圖象,反比例函數圖象,觀察二次函數圖象判斷出m、n的取值是解題的關鍵.
希望這篇中考數學考前必做試題,可以幫助更好的迎接即將到來的考試!
本文來自:逍遙右腦記憶 /zhongkao/851905.html
相關閱讀:中考英語情景交際答題方法指導
中考備考策略:優等生的中考復習方法
北京中考數學真題解析:多思考 重視應用
新高一物理學習方法:中考后的暑假如何學習高一物理
中考數學填空題解題注意事項須知