1.“∵四邊形ABCD是矩形,∴四邊形ABCD的對角線相等”,補充以上推理的大前提是( )
A.正方形都是對角線相等的四邊形
B.矩形都是對角線相等的四邊形
C.等腰梯形都是對角線相等的四邊形
D.矩形都是對邊平行且相等的四邊形
[答案] B
[解析] 由大前提、小前提、結論三者的關系,知大前提是:矩形是對角線相等的四邊形.故應選B.
2.“①一個錯誤的推理或者前提不成立,或者推理形式不正確,②這個錯誤的推理不是前提不成立,③所以這個錯誤的推理是推理形式不正確.”上述三段論是( )
A.大前提錯
B.小前提錯
C.結論錯
D.正確的
[答案] D
[解析] 前提正確,推理形式及結論都正確.故應選D.
3.《論語?學路》篇中說:“名不正,則言不順;言不順,則事不成;事不成,則禮樂不興;禮樂不興,則刑罰不中;刑罰不中,則民無所措手足;所以,名不正,則民無所措手足.”上述推理用的是( )
A.類比推理
B.歸納推理
C.演繹推理
D.一次三段論
[答案] C
[解析] 這是一個復合三段論,從“名不正”推出“民無所措手足”,連續運用五次三段論,屬演繹推理形式.
4.“因對數函數y=logax(x>0)是增函數(大前提),而y=log13x是對數函數(小前提),所以y=log13x是增函數(結論)”.上面推理的錯誤是( )
A.大前提錯導致結論錯
B.小前提錯導致結論錯
C.推理形式錯導致結論錯
D.大前提和小前提都錯導致結論錯
[答案] A
[解析] 對數函數y=logax不是增函數,只有當a>1時,才是增函數,所以大前提是錯誤的.
5.推理:“①矩形是平行四邊形,②三角形不是平行四邊形,③所以三角形不是矩形”中的小前提是( )
A.①
B.②
C.③
D.①②
[答案] B
[解析] 由①②③的關系知,小前提應為“三角形不是平行四邊形”.故應選B.
6.三段論:“①只有船準時起航,才能準時到達目的港,②這艘船是準時到達目的港的,③所以這艘船是準時起航的”中的小前提是( )
A.①
B.②
C.①②
D.③
[答案] B
[解析] 易知應為②.故應選B.
7.“10是5的倍數,15是5的倍數,所以15是10的倍數”上述推理( )
A.大前提錯
B.小前提錯
C.推論過程錯
D.正確
[答案] C
[解析] 大小前提正確,結論錯誤,那么推論過程錯.故應選C.
8.凡自然數是整數,4是自然數,所以4是整數,以上三段論推理( )
A.正確
B.推理形式正確
C.兩個自然數概念不一致
D.兩個整數概念不一致
[答案] A
[解析] 三段論的推理是正確的.故應選A.
9.在三段論中,M,P,S的包含關系可表示為( )
[答案] A
[解析] 如果概念P包含了概念M,則P必包含了M中的任一概念S,這時三者的包含可表示為 ;
如果概念P排斥了概念M,則必排斥M中的任一概念S,這時三者的關系應為 .故應選A.
10.命題“有些有理數是無限循環小數,整數是有理數,所以整數是無限循環小數”是假命題,推理錯誤的原因是( )
A.使用了歸納推理
B.使用了類比推理
C.使用了“三段論”,但大前提使用錯誤
D.使用了“三段論”,但小前提使用錯誤
[答案] D
[解析] 應用了“三段論”推理,小前提與大前提不對應,小前提使用錯誤導致結論錯誤.
二、題
11.求函數y=log2x-2的定義域時,第一步推理中大前提是a有意義時,a≥0,小前提是log2x-2有意義,結論是________.
[答案] log2x-2≥0
[解析] 由三段論方法知應為log2x-2≥0.
12.以下推理過程省略的大前提為:________.
∵a2+b2≥2ab,
∴2(a2+b2)≥a2+b2+2ab.
[答案] 若a≥b,則a+c≥b+c
[解析] 由小前提和結論可知,是在小前提的兩邊同時加上了a2+b2,故大前提為:若a≥b,則a+c≥b+c.
13.(2010?重慶理,15)已知函數f(x)滿足:f(1)=14,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),則f(2010)=________.
[答案] 12
[解析] 令y=1得4f(x)?f(1)=f(x+1)+f(x-1)
即f(x)=f(x+1)+f(x-1)、
令x取x+1則f(x+1)=f(x+2)+f(x) ②
由①②得f(x)=f(x+2)+f(x)+f(x-1),
即f(x-1)=-f(x+2)
∴f(x)=-f(x+3),∴f(x+3)=-f(x+6)
∴f(x)=f(x+6)
即f(x)周期為6,
∴f(2010)=f(6×335+0)=f(0)
對4f(x)f(y)=f(x+y)+f(x-y),令x=1,y=0,得
4f(1)f(0)=2f(1),
∴f(0)=12即f(2010)=12.
14.四棱錐P-ABCD中,O為CD上的動點,四邊形ABCD滿足條件________時,VP-AOB恒為定值(寫出一個你認為正確的一個條件即可).
[答案] 四邊形ABCD為平行四邊形或矩形或正方形等
[解析] 設h為P到面ABCD的距離,VP-AOB=13S△AOB?h,
又S△AOB=12ABd(d為O到直線AB的距離).
因為h、AB均為定值,所以VP-AOB恒為定值時,只有d也為定值,這是一個開放型問題,答案為四邊形ABCD為平行四邊形或矩形或正方形等.
三、解答題
15.用三段論形式證明:在梯形ABCD中,AD∥BC,AB=DC,則∠B=∠C.
[證明] 如下圖延長AB,DC交于點M.
①平行線分線段成比例大前提
②△AMD中AD∥BC小前提
③MBBA=MCCD結論
①等量代換大前提
②AB=CD小前提
③MB=MC結論
在三角形中等邊對等角大前提
MB=MC小前提
∠1=∠MBC=∠MCB=∠2結論
等量代換大前提
∠B=π-∠1 ∠C=π-∠2小前提
∠B=∠C結論
16.用三段論形式證明:f(x)=x3+x(x∈R)為奇函數.
[證明] 若f(-x)=-f(x),則f(x)為奇函數 大前提
∵f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)=-f(x)小前提
∴f(x)=x3+x是奇函數結論
17.用三段論寫出求解下題的主要解答過程.
若不等式ax+2<6的解集為(-1,2),求實數a的值.
[解析] 推理的第一個關鍵環節:
大前提:如果不等式f(x)<0的解集為(m,n),且f(m)、f(n)有意義,則m、n是方程f(x)=0的實數根,
小前提:不等式ax+2<6的解集為(-1,2),且x=-1與x=2都使表達式ax+2-6有意義,
結論:-1和2是方程ax+2-6=0的根.
∴-a+2-6=0與2a+2-6=0同時成立.
推理的第二個關鍵環節:
大前提:如果x=a,a>0,那么x=±a,
小前提:-a+2=6且2a+2=6,
結論:-a+2=±6且2a+2=±6.
以下可得出結論a=-4.
18.設A(x1,y1)、B(x2,y2)兩點在拋物線y=2x2上,l是AB的垂直平分線.
(1)當且僅當x1+x2取何值時,直線l經過拋物線的焦點F?證明你的結論;
(2)當直線l的斜率為2時,求l在y軸上截距的取值范圍.
[解析] (1)F∈l?FA=FB?A、B兩點到拋物線的準線的距離相等.
∵拋物線的準線是x軸的平行線,y1≥0,y2≥0,依題意,y1,y2不同時為0.
∴上述條件等價于
y1=y2?x21=x22?(x1+x2)(x1-x2)=0.
∵x1≠x2,∴上述條件等價于x1+x2=0,即當且僅當x1+x2=0時,l經過拋物線的焦點F.
(2)設l在y軸上的截距為b,依題意得l的方程為y=2x+b;過點A、B的直線方程為y=-12x+m,所以x1,x2滿足方程2x2+12x-m=0,得x1+x2=-14.
A、B為拋物線上不同的兩點等價于上述方程的判別式Δ=14+8m>0,即m>-132.設AB的中點N的坐標為(x0,y0),則
x0=12(x1+x2)=-18,
y0=-12x0+m=116+m.
由N∈l,得116+m=-14+b,于是
本文來自:逍遙右腦記憶 /gaoer/71277.html
相關閱讀:2014-2014學年高二數學上冊第一次月考測試題(含答案)
河南省周口市中英文學校2015-2016學年高二下學期第一次月考數學
山東省濟寧市任城一中2013-2014學年高二12月質檢 數學理
山東省濟南一中2015-2016學年高二上學期期中質量檢測數學(文)
福建省安溪八中2013-2014學年高二上第二學段質量檢測(期末)數