一、目標導航
1.進一步理解和總結證明的步驟、格式和方法.
2.會根據“同位角相等,兩直線平行”證明“同旁內角互補,兩直線平行”“內錯角相等,兩直線平行”,并能夠靈活應用.
二.基礎過關
1.如圖1,AB∥CD,則下列結論成立的是( )
A.∠A+∠C=180°B.∠A+∠B=180°
C.∠B+∠C=180° D.∠B+∠D=180°
2.若兩個角的一邊在同一條直線上,另一邊互相平行,那么這兩個角的關系是( )
A.相等 B.互補 C.相等或互補 D.相等且互補
3.如圖2,E、F分別是AB、AC上的點,G是BC的延長線上一點,且∠B=∠DCG=∠D,則下列判斷錯誤的是( )
A.∠ADF=∠DCG B.∠A=∠BCF
C.∠AEF=∠EBC D. ∠BEF+∠EFC=
4.如圖3,下列推理正確的是( )
A.∵MA∥NB,∴∠1=∠3 B.∵∠2=∠4,∴MC∥ND
C.∵∠1=∠3,∴MA∥NB D.∵MC∥ND,∴∠1=∠3
5.如圖4,a∥b,點B在直線b上,且AB⊥BC,∠1=55°,則∠2的度數為 ( )
A.35° B.45° C.55° D.125°
6.如圖5,已知AB∥CD,∠1=65°,∠2=45°,則∠ADC=________.
7.如圖6,已知∠1=∠2,∠BAD=57°,則∠B=________.
8.如圖7,若AB∥EF,BC∥DE,則∠B+∠E=________.
9.如圖8,由A測B的方向是________.
三、能力提升
10.已知:如圖,∠B=∠C.
(1)若AD∥BC,求證:AD平分∠EAC;
(2)若∠B+∠C+∠ABC=180,AD平分∠EAC,求證:AD∥BC.
11.已知:如圖,∠1=∠B,∠A=32°.求:∠2的度數.
12.如圖,∠B+∠BCD+∠D= ,求證:∠1=∠2.
13.如圖,A、B之間是一座山,要修一條鐵路通過A、B兩地,在A地測得鐵路走向是北偏東58°11′.如果A、B兩地同時開工開隧道,那么在B地按北偏西多少度施工,才能使鐵路隧道在山腹中準確接通?
四、聚沙成塔
(1)如圖(1),AB∥EF.求證:∠BCF=∠B+∠F.
(2)當點C在直線BF的右側時,如圖(2),若AB∥EF,則∠BCF與∠B、∠F的關系如何?請說明理由.
6.4 如果兩條直線平行
1.C 2.C 3.C 4.B 5.A 6. 110 7. 123 8. 180 9.南偏東70 10. 證明:(1)∵AD∥BC,∴∠1=∠B,∠2=∠C.又∠B=∠C,∴∠1=∠2,即AD平分∠EAC;(2)由∠B+∠C+∠BAC=180,且∠1+∠2+∠BAC=180知,∠1+∠2=∠B+∠C,又AD平分∠EAC,∴∠1=∠2,而∠B=∠C,故∠1=∠B,或∠2=∠C,從而AD∥BC. 11. 148
12.提示:過點C做CP∥AB 13. 12149? 14. (1)證明:過C作CD∥AB,∵AB∥EF,∴CD∥AB∥EF,∴∠B=∠BCD,∠F=∠FCD, 故∠B+∠F=∠BCF.(2)過C作CD∥AB,∴∠B+∠BCD=180,又AB∥EF,AB∥CD,∴CD∥EF∥AB,∴∠F+∠FCD=180,故∠B+∠F+∠BCF=360.
本文來自:逍遙右腦記憶 /chuer/72016.html
相關閱讀:2018年秋八年級數學上《6.3一次函數的圖像》同步練習(蘇科版帶
2013年初二上冊數學期中測試題(人教版)
2012年八年級上冊數學第三次月考試題
2015年秋季學期高三語文第一次檢測考試卷(含答案)
八年級數學上冊六套期末試卷(滬科版帶答案)