講解一元一次方程應用題,講解和差倍分問題,等積變形問題,數字問題,市場經濟問題,行程問題,儲蓄問題等問題,并附有練習題及習題答案詳解,希望有所幫助。
1.列一元一次方程解應用題的一般步驟
(1)審題:弄清題意.(2)找出等量關系:找出能夠表示本題含義的相等關系.(3)設出未知數,列出方程:設出未知數后,表示出有關的含字母的式子,然后利用已找出的等量關系列出方程.(4)解方程:解所列的方程,求出未知數的值.(5)檢驗,寫答案:檢驗所求出的未知數的值是否是方程的解,是否符合實際,檢驗后寫出答案.
2.和差倍分問題
增長量=原有量×增長率 現在量=原有量+增長量
3.等積變形問題
常見幾何圖形的面積、體積、周長計算公式,依據形雖變,但體積不變.
、賵A柱體的體積公式 V=底面積×高=S·h= r2h
、陂L方體的體積 V=長×寬×高=abc
4.數字問題
一般可設個位數字為a,十位數字為b,百位數字為c.
十位數可表示為10b+a, 百位數可表示為100c+10b+a.
然后抓住數字間或新數、原數之間的關系找等量關系列方程.
5.市場經濟問題
(1)商品利潤=商品售價-商品成本價 (2)商品利潤率= ×100%
(3)商品銷售額=商品銷售價×商品銷售量
(4)商品的銷售利潤=(銷售價-成本價)×銷售量
(5)商品打幾折出售,就是按原標價的百分之幾十出售,如商品打8折出售,即按原標價的80%出售.
6.行程問題:路程=速度×時間 時間=路程÷速度 速度=路程÷時間
(1)相遇問題: 快行距+慢行距=原距
(2)追及問題: 快行距-慢行距=原距
(3)航行問題:順水(風)速度=靜水(風)速度+水流(風)速度
逆水(風)速度=靜水(風)速度-水流(風)速度
抓住兩碼頭間距離不變,水流速和船速(靜不速)不變的特點考慮相等關系.
7.工程問題:工作量=工作效率×工作時間
完成某項任務的各工作量的和=總工作量=1
8.儲蓄問題
利潤= ×100% 利息=本金×利率×期數
1.將一批工業最新動態信息輸入管理儲存網絡,甲獨做需6小時,乙獨做需4小時,甲先做30分鐘,然后甲、乙一起做,則甲、乙一起做還需多少小時才能完成工作?
2.兄弟二人今年分別為15歲和9歲,多少年后兄的年齡是弟的年齡的2倍?
3.將一個裝滿水的內部長、寬、高分別為300毫米,300毫米和80毫米的長方體鐵盒中的水,倒入一個內徑為200毫米的圓柱形水桶中,正好倒滿,求圓柱形水桶的高(精確到0.1毫米, ≈3.14).
4.有一火車以每分鐘600米的速度要過完第一、第二兩座鐵橋,過第二鐵橋比過第一鐵橋需多5秒,又知第二鐵橋的長度比第一鐵橋長度的2倍短50米,試求各鐵橋的長.
5.有某種三色冰淇淋50克,咖啡色、紅色和白色配料的比是2:3:5,這種三色冰淇淋中咖啡色、紅色和白色配料分別是多少克?
6.某車間有16名工人,每人每天可加工甲種零件5個或乙種零件4個.在這16名工人中,一部分人加工甲種零件,其余的加工乙種零件.已知每加工一個甲種零件可獲利16元,每加工一個乙種零件可獲利24元.若此車間一共獲利1440元,求這一天有幾個工人加工甲種零件.
7.某地區居民生活用電基本價格為每千瓦時0.40元,若每月用電量超過a千瓦時,則超過部分按基本電價的70%收費.
(1)某戶八月份用電84千瓦時,共交電費30.72元,求a.
(2)若該用戶九月份的平均電費為0.36元,則九月份共用電多少千瓦?應交電費是多少元?
8.某家電商場計劃用9萬元從生產廠家購進50臺電視機.已知該廠家生產3種不同型號的電視機,出廠價分別為A種每臺1500元,B種每臺2100元,C種每臺2500元.
(1)若家電商場同時購進兩種不同型號的電視機共50臺,用去9萬元,請你研究一下商場的進貨方案.
(2)若商場銷售一臺A種電視機可獲利150元,銷售一臺B種電視機可獲利200元,銷售一臺C種電視機可獲利250元,在同時購進兩種不同型號的電視機方案中,為了使銷售時獲利最多,你選擇哪種方案?
本文來自:逍遙右腦記憶 /chuzhong/183859.html
相關閱讀:初中數學正方形的幾何知識點
初中數學角的公式大全
平行四邊形?初中數學題精選
淺談初中數學作業設計有效性的實踐與研究
學習初中數學的方法之高質量練習