歡迎來到記憶方法網-免費提供各種記憶力訓練學習方法!

初中數學知識點總結:全等三角形

編輯: 路逍遙 關鍵詞: 初中數學 來源: 記憶方法網

一、全等圖形、全等三角形:
1.全等圖形:能夠完全重合的兩個圖形就是全等圖形。
2.全等圖形的性質:全等多邊形的對應邊、對應角分別相等。
3.全等三角形: 三角形是特殊的多邊形,因此,全等三角形的對應邊、對應角分別相等。同樣,如果兩個三角形的邊、角分別對應相等,那么這兩個三角形全等。
說明:全等三角形對應邊上的高,中線相等,對應角的平分線相等;全等三角形的周長,面積也都相等。
這里要注意:(1)周長相等的兩個三角形,不一定全等;(2)面積相等的兩個三角形 初中化學,也不一定全等。
二、全等三角形的判定:
1.一般三角形全等的判定
(1)邊邊 邊公理:三邊對應相等的兩個三角形全等(“邊邊邊”或“SSS”)。
(2)邊角公理:兩邊和它們的夾角對應相等的兩個三角形全等(“邊角邊”或“SAS”)。
(3)角邊角公理: 兩個角和它們的夾邊分別對應相等的兩個三角形全等(“角邊角”或“ASA”)。
(4)角角邊定理:有兩角和其中一角的對邊對應相等的兩個三角形全等(“角角邊”或“AAS”)。
2.直角三角形全等的判定
利用一般三角形全等的判定都能證明直角三角形全等.
斜邊和一條直角邊對應相等的兩個直角三角形全等(“斜邊、直角邊”或“HL”).
注意:兩邊一對角(SSA)和三角(AAA)對應相等的兩個三角形不一定全等。
三、角平分線的性質及判定:
性質定理:角平分線上的點到該角兩邊的距離相等。
判定定理:到角的兩邊距離相等的點在該角的角平分線上。
四、證明兩三角形全等或利用它證明線段或角的相等的基本步驟:
1.確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系);
2.回顧三角形判定公理,搞清還需要什么;3.正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題)。


本文來自:逍遙右腦記憶 /chuzhong/31741.html

相關閱讀:平行四邊形?初中數學題精選
初中數學角的公式大全
初中數學正方形的幾何知識點
淺談初中數學作業設計有效性的實踐與研究
學習初中數學的方法之高質量練習


国内精品久久久久久久亚洲