歡迎來到記憶方法網-免費提供各種記憶力訓練學習方法!

直角三角形的性質和判定

編輯: 路逍遙 關鍵詞: 九年級 來源: 記憶方法網



一、教學目標:
1.掌握直角三角形的性質和判定。
2.鞏固利用添輔助線證明有關幾何問題的方法。
3.通過圖形的變換,引導學生發現提出新問題,進行類比聯想,促進學生的思維向多層次多方位發散。培養學生的創新精神和創造能力。
二、教學內容:
重點:直角三角形斜邊上的中線性質定理的應用。
難點:直角三角形斜邊上的中線性質定理的探索過程及證明思想方法。
三、教學方法:
觀察、比較、合作、交流、探索。
四、教學過程:
(一)預習導學:
引言:在前面我們學習了直角三角三角形的有關概念。
回憶:什么叫直角三角形?(有一個內角為直角的三角形叫直角三角形)
這節我們繼續學習直角三角形的性質和判定的有關內容。
(二)交流探究:
1.如圖:Rt△ABC中,∠C=90°,則∠A+∠B= 。為什么?
2.△ABC中,若∠A+∠B=90°,判斷△ABC的形狀。

結論:
性質定理:直角三角形的兩銳角互余。
判定定理:有兩個銳角互余的三角形是直角三角形。
3.動手操作:
○1畫一個Rt△ABC;○2找到斜邊的中點D;○3連接CD(CD就是Rt△ABC斜邊上的中線。)
○4量一量DA、DB、DC的長度,你發現什么結論?

猜想:斜邊上的中線與斜邊的長度有何關系?(斜邊上的中線等于斜邊的一半)
驗證:要證CD=1/2AB,即CD=DA=DB
不妨將RtABC如圖折疊,使點A與點C重合,折痕與斜邊AB交于點D。
則DA=DC,∠A=∠1
因為:∠A+∠B=90°(直角三角形兩銳角互余)
∠1+∠2=90°( )
所以:∠B=∠2( )
于是:DC=DB( )
所以:DA=DC=DB 即點D為AB的中點
因此:CD=1/2AB
結論:性質定理:在直角三角形中,斜邊上的中線等于斜邊上的一半。利用這條性質,可以解決很多與直角三角形有關的問題。
(三)精導精講:
例1:Rt△ABC中,∠C=90°,O為AB的中點,若OC=5則AB=
若AB=18則OC=
例2:已知在△ABC中BD、CE分別是AC、AB上的高,F是BC中點,求證:FD=FE學生上臺演示
分析:(1)若連接DE,得出什么結論。(△DEF等腰三角形)
(2)若O是DE中點,則FO與DE有何關系?FODE)
師生共同完成解題過程。
(四)應用提升:
如圖:D是線段AB中點,C是AB外一點,且DC=DA=DB,連接AC、BC,試判斷△ABC的形狀并說明理由。
易證:∠A+∠B=90°
或∠1+∠2=90°
學生上臺演示解題過程。
結論:如果三角形一邊上的中線等于這條邊的一半,那么這個三角形是直角三角形。
(五)堂小結:
這節你有何收獲?
學習了直角三角形兩性質定理及判定定理。
(2)直角三角形的兩銳角互余。
(3)直角三角形斜邊上的中線等于斜邊的一半
(4)兩銳角互余的三角形是直角三角形。
(5)如果三角形一邊上的中線等于這條邊的一半,那么這個三角形是直角三角形。
(六)作業布置:P87練習題
(七)后反思




本文來自:逍遙右腦記憶 /chusan/43076.html

相關閱讀:相似三角形的應用
銳角三角函數的應用
九年級數學競賽動態幾何問題透視輔導教案
根與系數關系
中考復習反比例函數的圖象與性質學案


国内精品久久久久久久亚洲