歡迎來到記憶方法網-免費提供各種記憶力訓練學習方法!

實際問題與二次函數

編輯: 路逍遙 關鍵詞: 九年級 來源: 記憶方法網
26.3 實際問題與二次函數(1)
目標:
1.使學生掌握用待定系數法由已知圖象上一個點的坐標求二次函數y=ax2的關系式。
2. 使學生掌握用待定系數法由已知圖象上三個點的坐標求二次函數的關系式。
3.讓學生體驗二次函數的函數關系式的應用,提高學生用數學意識。
重點難點:
重點:已知二次函數圖象上一個點的坐標或三個點的坐標,分別求二次函數y=ax2、y=ax2+bx+c的關系式是的重點。
難點:已知圖象上三個點坐標求二次函數的關系式是教學的難點。
教學過程:
一、創設問題情境
如圖,某建筑的屋頂設計成橫截面為拋物線型(曲線AOB)的薄殼屋頂。它的拱高AB為4m,拱高CO為0.8m。施工前要先制造建筑模板,怎樣畫出模板的輪廓線呢?
分析:為了畫出符合要求的模板,通常要先建立適當的直角坐標系,再寫出函數關系式,然后根據這個關系式進行計算,放樣畫圖。
如圖所示,以AB的垂直平分線為y軸,以過點O的y軸的垂線為x軸,建立直角坐標系。這時,屋頂的橫截面所成拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設它的函數關系式為: y=ax2 (a<0) (1)
因為y軸垂直平分AB,并交AB于點C,所以CB=AB2 =2(cm),又CO=0.8m,所以點B的坐標為(2,-0.8)。
因為點B在拋物線上,將它的坐標代人(1),得 -0.8=a×22 所以a=-0.2
因此,所求函數關系式是y=-0.2x2。
請同學們根據這個函數關系式,畫出模板的輪廓線。
二、引申拓展
問題1:能不能以A點為原點,AB所在直線為x軸,過點A的x軸的垂線為y軸,建立直角坐標系?
讓學生了解建立直角坐標系的方法不是唯一的,以A點為原點,AB所在的直線為x軸,過點A的x軸的垂線為y軸,建立直角坐標系也是可行的。
問題2,若以A點為原點,AB所在直線為x軸,過點A的x軸的垂直為y軸,建立直角坐標系,你能求出其函數關系式嗎?
分析:按此方法建立直角坐標系,則A點坐標為(0,0),B點坐標為(4,0),OC所在直線為拋物線的對稱軸,所以有AC=CB,AC=2m,O點坐標為(2;0.8)。即把問題轉化為:已知拋物線過(0,0)、(4,0);(2,0.8)三點,求這個二次函數的關系式。
二次函數的一般形式是y=ax2+bx+c,求這個二次函數的關系式,跟以前學過求一次函數的關系式一樣,關鍵是確定o、6、c,已知三點在拋物線上,所以它的坐標必須適合所求的函數關系式;可列出三個方程,解此方程組,求出三個待定系數。
解:設所求的二次函數關系式為y=ax2+bx+c。
因為OC所在直線為拋物線的對稱軸,所以有AC=CB,AC=2m,拱高OC=0.8m,
所以O點坐標為(2,0.8),A點坐標為(0,0),B點坐標為(4,0)。
由已知,函數的圖象過(0,0),可得c=0,又由于其圖象過(2,0.8)、(4,0),可得到4a+2b=0.816+4b=0 解這個方程組,得a=-15b=45 所以,所求的二次函數的關系式為y=-15x2+45x。
問題3:根據這個函數關系式,畫出模板的輪廓線,其圖象是否與前面所畫圖象相同?
問題4:比較兩種建立直角坐標系的方式,你認為哪種建立直角坐標系方式能使解決問題來得更簡便?為什么?
(第一種建立直角坐標系能使解決問題來得更簡便,這是因為所設函數關系式待定系數少,所求出的函數關系式簡單,相應地作圖象也容易)
請同學們閱瀆P18例7。
三、課堂練習: P18練習1.(1)、(3)2。
四、綜合運用
例1.如圖所示,求二次函數的關系式。
分析:觀察圖象可知,A點坐標是(8,0),C點坐標為(0,4)。從圖中可知對稱軸是直線x=3,由于拋物線是關于對稱軸的軸對稱圖形,所以此拋物線在x軸上的另一交點B的坐標是(-2,0),問題轉化為已知三點求函數關系式。
解:觀察圖象可知,A、C兩點的坐標分別是(8,0)、(0,4),對稱軸是直線x=3。因為對稱軸是直線x=3,所以B點坐標為(-2,0)。
設所求二次函數為y=ax2+bx+c,由已知,這個圖象經過點(0,4),可以得到c=4,又由于其圖象過(8,0)、(-2,0)兩點,可以得到64a+8b=-44a-2b=-4 解這個方程組,得a=-14b=32
所以,所求二次函數的關系式是y=-14x2+32x+4
練習: 一條拋物線y=ax2+bx+c經過點(0,0)與(12,0),最高點的縱坐標是3,求這條拋物線的解析式。
五、小結: 二次函數的關系式有幾種形式,函數的關系式y=ax2+bx+c就是其中一種常見的形式。二次函數關系式的確定,關鍵在于求出三個待定系數a、b、c,由于已知三點坐標必須適合所求的函數關系式,故可列出三個方程,求出三個待定系數。
六、作業
1.P19習題 26.2 4.(1)、(3)、5。
2.選用課時作業優化設計,
每一課時作業優化設計
1. 二次函數的圖象的頂點在原點,且過點(2,4),求這個二次函數的關系式。
2.若二次函數的圖象經過A(0,0),B(-1,-11),C(1,9)三點,求這個二次函數的解析式。
3.如果拋物線y=ax2+Bx+c經過點(-1,12),(0,5)和(2,-3),;求a+b+c的值。
4.已知二次函數y=ax2+bx+c的圖象如圖所示,求這個二次函數的關系式;


本文來自:逍遙右腦記憶 /chusan/70592.html

相關閱讀:九年級數學競賽動態幾何問題透視輔導教案
銳角三角函數的應用
根與系數關系
中考復習反比例函數的圖象與性質學案
相似三角形的應用


国内精品久久久久久久亚洲