一、選擇題
1.z=x-y在2x-y+1≥0x-2y-1≤0 x+y≤1的線性約束條件下,取得最大值的可行解為( )
A.(0,1) B.(-1,-1)
C.(1,0) D.(12,12)
解析:選C.可以驗證這四個點均是可行解,當x=0,y=1時,z=-1;當x=-1,y=-1時,z=0;當x=1,y=0時,z=1;當x=12,y=12時,z=0.排除A,B,D.
2.(2010年高考浙江卷)若實數x,y滿足不等式組x+3y-3≥0,2x-y-3≤0,x-y+1≥0,則x+y的最大值為( )
A.9 B.157
C.1 D.715
解析:選A.畫出可行域如圖:
令z=x+y,可變為y=-x+z,
作出目標函數線,平移目標函數線,顯然過點A時z最大.
由2x-y-3=0,x-y+1=0,得A(4,5),∴zmax=4+5=9.
3.在△ABC中,三頂點分別為A(2,4),B(-1,2),C(1,0),點P(x,y)在△ABC內部及其邊界上運動,則m=y-x的取值范圍為( )
A.[1,3] B.[-3,1]
C.[-1,3] D.[-3,-1]
解析:選C.直線m=y-x的斜率k1=1≥kAB=23,且k1=1
∴直線經過C時m最小,為-1,
經過B時m最大,為3.
4.已知點P(x,y)在不等式組x-2≤0y-1≤0x+2y-2≥0表示的平面區域內運動,則z=x-y的取值范圍是( )
A.[-2,-1] B.[-2,1]
C.[-1,2] D.[1,2]
解析:選C.先畫出滿足約束條件的可行域,如圖陰影部分,
∵z=x-y,∴y=x-z.
由圖知截距-z的范圍為[-2,1],∴z的范圍為[-1,2].
5.設動點坐標(x,y)滿足x-y+1x+y-4≥0,x≥3,y≥1.則x2+y2的最小值為( )
A.5 B.10
C.172 D.10
解析:選D.畫出不等式組所對應的平面區域,由圖可知當x=3,y=1時,x2+y2的最小值為10.
6.(2009年高考四川卷)某企業生產甲、乙兩種產品,已知生產每噸甲產品要用A原料3噸、B原料2噸;生產每噸乙產品要用A原料1噸、B原料3噸.銷售每噸甲產品可獲得利潤5萬元、每噸乙產品可獲得利潤3萬元,該企業在一個生產周期內消耗A原料不超過13噸、B原料不超過18噸,那么該企業可獲得的最大利潤是( ) w w w .x k b 1.c o m
A.12萬元 B.20萬元
C.25萬元 D.27萬元
解析:選D.設生產甲產品x噸、乙產品y噸,則獲得的利潤為z=5x+3y.
由題意得
x≥0,y≥0,3x+y≤13,2x+3y≤18,可行域如圖陰影所示.
由圖可知當x、y在A點取值時,z取得最大值,此時x=3,y=4,z=5×3+3×4=27(萬元).
本文來自:逍遙右腦記憶 /gaosan/1152248.html
相關閱讀:內蒙古包頭一中2014屆高三下學期寒假補課檢測數學(理)試題 含
江西省宜春市上高二中2015屆高三下學期周考(一)數學(文)試題
高考數學幾何證明選講復習課件和檢測題
高三數學寒假作業試題
精品解析:北京市海淀區2015屆高三上學期期中考試(數學理)