歡迎來到記憶方法網-免費提供各種記憶力訓練學習方法!

高三數學寒假作業試題

編輯: 路逍遙 關鍵詞: 高三 來源: 記憶方法網

寒假馬上就要到了,同學們不要忘了在放松的時候還有寒假作業在等著我們去完成,下面是高三數學寒假作業試題,供學生參考。

高三數學寒假作業(一)

一、選擇題。

1、已知實數滿足1

A.p或q為真命題

B.p且q為假命題

C.非P且q為真命題

D.非p或非q為真命題

2、已知方程的四個根組成一個首項為的等差數列,則|m-n|=____________

A.1 B. C.D.

3、當時,令為與中的較大者,設a、b分別是f(x)的最大值和最小值,則a+b等于

A.0 B.

C.1- D.

4、若直線過圓的圓心,則ab的最大值是

A. B.C.1D.2

5、正四面體的四個頂點都在一個球面上,且正四面體的高為4,則球的表面積為

A. B.18

C.36 D.

6、過拋物線的焦點下的直線的傾斜角,交拋物線于A、B兩點,且A在x軸的上方,則|FA|的取值范圍是( )

A. B.

C. D.

二、填空題。

7、若 且a:b=3:2,則n=________________

8、定義區間長度m為這樣的一個量:m的大小為區間右端點的值減去區間去端點的值,若關于x的不等式,且解的區間長度不超過5個單位長,則a的取值范圍是__________

9、已知是不同的直線,是不重合的平面,給出下列命題:

(1)若,則平行于平面內的任意一條直線

上面命題中,真命題的序號是__________(寫出所有真命題的序號)

10、已知向量,令求函數的最大值、最小正周期,并寫出在[0,]上的單調區間。

11、已知函數

(1)若在區間[1,+]上是增函數,求實數a的取值范圍。

(2)若是的極值點,求在[1,a]上的最大值;

(3)在(2)的條件下,是否存在實數b,使得正數的圖象與函數的圖象恰有3個交點,若存在,請求出實數b的取值范圍;若不存在,試說明理由。

12、如圖三棱錐S-ABC中,SA平面ABC,,SA=BC=2,AB=4,M、N、D分別是SC、AB、BC的中點。

(1)求證MNAB;

(2)求二面角S-ND-A的正切值;

(3)求A點到平面SND的距離。

高三數學寒假作業(二)

一、選擇題。

1、設集合A=,,則方程表示焦點位于y軸上的橢圓有( )

A.5個 B.10個 C.20個 D.25個

2、不等式的解集是

A.

B.C.D.

3、的圖像關于點對稱,且在處函數有最小值,則的一個可能的取值是

A.0B.3C.6D.9

4、五個旅客投宿到三個旅館,每個旅館至少住一人,則住法總數有( )種

A.90B.60C.150D.180

5、不等式成立,則x的范圍是

A.B.

C.D.

6、的通項公式是,a、

b為正常數,則與的關系是

A.B.

C.D.與n的取值有關

二、填空題。

1、正方體的棱長為a,則以其六個面的中心為頂點的多面體的體積是___________

2、的圖象是中心對稱圖形,對稱中心是________________

3、對于兩個不共線向量、,定義為一個新的向量,滿足:

(1) =(為與的夾角)

(2) 的方向與、所在的平面垂直

在邊長為a的正方體ABCD-ABCD中,()?=______________

三、解答題。

1、設,是的兩個極值點,且

(1)證明:0

(2)證明:

(3)若,證明:當且時,2、雙曲線兩焦點F1和F2,F1是的焦點,兩點,B(1,2)都在雙曲線上。

(1)求點F1的坐標

(2)求點F2的軌跡

3、非等邊三角形ABC外接圓半徑為2,最長邊BC=,求的取值范圍。

高三數學寒假作業(三)

一、選擇題。

1、已知點,,動點P滿足,當點P的縱坐標是時,點P到坐標原點的距離是

A. B. C.D.2

2、設A、B、C、D是球面上的四個點,且在同一平面內,AB=BC=CD=DA=3,球心到該平面的距離是球半徑的一半,則球的體積是

A. B.

C.24D.72

3、若函數的圖象(部分)如下圖所示,則和的取值是

4、有兩排座位,前排11個座位,后排12個座位,現安排2人就座,規定前排中間的3個座位不能坐,并且這2人不左右相鄰,那么不同排法的種數是

A.234 B.346 C.350D.363

5、已知點、,動點P(x,y)滿足?=x2,則點P的軌跡是

A.圓B.橢圓

C.雙曲線D.拋物線

6、已知函數,則下列命題正確的是

A.是周期為1的奇函數

B.是周期為2的偶函數

C.是周期為1的非奇非偶函數

D.是周期為2的非奇非偶函數

二、填空題。

7、若經過點P(-1,0)的直線與圓相切,則此直線在y軸上的截距是_____________

8、______________

9、如圖,四棱柱ABCD-A1B1C1D1的底面ABCD為正方形,側棱與底面邊長均為2a,且,則側棱AA1和截面B1D1DB的距離是_______________

10、已知四棱錐P-ABCD,底面ABCD是菱形,,PD平面ABCD,PD=AD,點E為AB中點,點F為PD中點。

(1)證明平面PED平面PAB

(2)求二面角P-AB-F的平面角的余弦值

11、設橢圓方程為,過M(0,1)的直線交橢圓于A、B,O是原點,點P滿足,點N的坐標為,當繞點M旋轉時,求

(1)動點P的軌跡方程;

(2)的最大值與最小值。

12、已知函數的最大值不大于,又當時,,

(1)求a的值

(2)設,,,證明:

高三數學寒假作業(四)

一、 選擇題。

1、函數的圖象關于( )

A.x軸對稱軸B.直線y=x對稱

C.原點對稱 D.y軸對稱

2、雙曲線的左焦點為F,點P為左支下半支異于頂點A的任意一點,則直線PF的斜率變化范圍是( )

A.(-,0) B.C.D.3、設是可導函數,且,則=()

A. B.-1C.0D.-2

4、使點,到直線的距離分別等于1和3,這樣的直線有()

A.4條 B.3條 C.2條 D.1條

5、函數的最大值等于()

A.B.

C.D.

6、若函數在x0上可導,且滿足不等式恒成立,又常數a、b滿足a0,則下列不等式一定成立的是()A.B.C.D.

二、填空題。

7、函數的值域_______

8、關于x的不等式的解集為[m,n],若n-m=3,則實數k的值為______________

9、設,若滿足a+1且a-1,則稱a為孤立元,設的無孤立元的4元子集個數為,則與的關系是__________(寫出一個an、an+1有關的等式)。

三、解答題

10、某次有獎競猜活動中,主持人準備了A、B兩個互相獨立的問題,并宣布,觀眾答對問題A可獲獎金a元,答對問題B可獲獎金2a元;先答哪個題由觀眾自由選擇;只有第一個問題答對,才能再答第2個問題,否則中止答題,若你被選為幸運觀眾,

且假設你答對問題A、B概率分別為,,

你覺得應先回答哪個問題才能使你獲得獎金的期望較大?說明理由。

11、矩形ABCD中,,BC=2,沿對角線BD將向上折起,使A移至P且P在面BCD的射影O落在DC邊上。

(1)求證:O是CD的中點

(2)求二面角P-BD-C的大小

(3)求點C到面PBD的距離2、由原點O向三次曲線引切線,切于P1(x1,y1)(O、P1兩點不重合),再由P引此曲線的切線,切于點P2(x2,y2)(P1P2不重合),如此繼續下去,得到點列

(1)求x1

(2)求xn與xn+1滿足的關系式。

(3)若a0,判斷xn與a的大小關系并說明理由。

高三數學寒假作業(五)

一、選擇題。

1、已知集合,,若只有一個子集,則k的取值范圍是( )

A.B.

C.D.

2、設雙曲線

的一條準線與兩條漸近線交于A、B兩點,相應的焦點為F,若以AB為直徑的圓過F點,則雙曲線的離心率為( )

A.B. C.2D.

3、箱子里有5個黑球,4個白球,每次隨機取出一個球,若取出是黑球,則放回箱中,重新取球;若取出白球,則停止取球,那么第4次取球即停止的概率為( )

A. B.

C. D.

4、(理)復數滿足,則的最小值為( )

A.2 B.4C. D.

(文)設,且,則( )

A.B.

C. D.

5、(理)函數,在 上的最大值點為( )

A.0 B.C.D.

(文)函數有()

A. 一個極大值和一個極小值

B.兩個極大值和一個極小值

C.一個極大值和兩個極小值

D.兩個極大值和兩個極小值

6、設方程和方程的兩根分別是p、q,函數,則A.B.

C. D.二、填空題。

7、設二項式的展開式中,

各項的系數和M,所有二項式系數的和為N,如果M+N=272,則n=______________

8、設直線與拋物線相交于A、B兩點,O為坐標原點,若,則與軸交點的橫坐標的取值范圍是____________

9、設,且=1,則對任何實數a、b、x,f(x)的最大值的取值范圍是_________________10、(本題滿分12分)現有甲、乙、丙三人獨立參加入學考試,合格的概率分別為,求:

(1)三人中至少有一人合格的概率;

(2)三人中有兩人合格的概率;

(3)合格人數的數學期望。

11、(本題滿分12分)若為雙曲線的左右焦點,0為坐標原點,P在雙曲線的左支上,點M在右準線上,且滿足;,

(1)求該雙曲線的離心率;

(2)若該雙曲線過,求雙曲線的方程;

(3)若過的雙曲線的虛軸端點分別為、(B1在y軸正半軸上),點A、B在雙曲線上,且,求時,直線AB的方程。

12、(本題滿分12分)已知函數在區間[0,1]上單調遞增,在區間[1,2]上單調遞減;

(1)求a的值;

(2)求證:x=1是該函數的一條對稱軸

(3)是否存在實數b,使函數的圖象與函數f(x)的圖象恰好有兩個交點?若存在,求出b的值;若不存在,請說明理由。

高三數學寒假作業(六)

一、選擇題。

1、已知拋物線上一定點A(-1,0)和兩定點P、Q,當PAPQ時,點Q的橫坐標的取值范圍是( )

A.B.

C. D.

2、四面體的頂點和各棱中點共有10個點,在其中取4個不共面的點,不同的取法共有( )

A.150種 B.147種

C.144種 D.141種

3、如果函數的定義域是,則的定義域()

A.[1,2] B.[1,5]

C.[1,17] D.[5,17]

4、在-6,-4,-2,0,1,3,5,7這8個數中,任取兩個不同的數分別作為虛數a+b的實部和虛部,則所能組成的所有不同虛數中,模大于5的虛數的個數是( )

A.32B.34C.42D.43

5、若

的最小正周期是1,則實數t的值為( )

A.1B.1 C.D.

6、與雙曲線有共同漸近線,且經過點的雙曲線的一個焦點到一條漸近線的距離是()

A.B.

C.D.1

7、函數對于x0時,總有,則a的取值范圍是________

8、要排一個有6個獨唱節目和4個合唱節目的演出表,如果合唱的節目不排頭,并且任何2個合唱節目不相鄰,則不同的排法種數是____________

9、求函數的值域。

10、已知函數

(1)求f(x)的定義域和值域;

(2)判斷它的奇偶性

(3)求出它的單調區間;

(4)判斷它的周期。

11、如圖所示,已知G是ABO的重心。

(1)求;

(2)若PQ過ABO的重心G,且,,,,求證:

12、已知數列和,有,,而的前n項和

(1)求bn

(2)用n表示,并求an

高三數學寒假作業試題就分享到這里了,更多高三數學寒假作業請繼續關注數學網高中頻道!


本文來自:逍遙右腦記憶 /gaosan/782029.html

相關閱讀:精品解析:北京市海淀區2015屆高三上學期期中考試(數學理)
江西省宜春市上高二中2015屆高三下學期周考(一)數學(文)試題
高考數學幾何證明選講復習課件和檢測題
高三數學寒假作業試題
內蒙古包頭一中2014屆高三下學期寒假補課檢測數學(理)試題 含


国内精品久久久久久久亚洲