《怎樣解題:數學思維的新方法》是一本經久不衰的暢銷書出自一位著名數學家的手筆,雖然它討論的是數學中發現和發明的方法和規律,但是對在其他任何領域中怎樣進行正確思維都有明顯的指導作用。本書圍繞“探索法”這一主題,采用明晰動人的散文筆法,闡述了求得一個證明或解出一個未知數的數學方法怎樣可以有助于解決任何“推理”性問題——從建造一座橋到猜出一個字謎。一代又一代的讀者嘗到了本書的甜頭,他們在本書的指導下,學會了怎樣摒棄不相干的東西,直搗問題的心臟。
目錄
第一部分 在教室里
目的
1.幫助學生
2.問題,建議,思維活動
3.普遍性
4.常識
5.教師和學生,模仿和實踐
主要部分,主要問題
6.四個階段
7.理解題目
8.例子
9.擬訂方案
10.例子
11.執行方案
12.例子
13.回顧
14.例子
15.不同的方法
16.教師提問的方法
17.好問題與壞問題
進一步的例子
18.一道作圖題
19.一道證明題
20.一道速率題
第二部分 怎樣解題
一段對話
第三部分 探索法小詞典
類比
輔助元素
輔助題目
波爾察諾
出色的念頭
你能檢驗這個結果嗎?
你能以不同的方式推導這個結果嗎?
你能應用這個結果嗎?
執行
條件
矛盾
推論
你能從已知數據中得出一些有用的東西嗎?
你能重新敘述這道題目嗎?
分解和重組
定義
笛卡兒
決心、希望、成功
診斷
你用到所有的已知數據了嗎?
你知道一道與它有關的題目嗎?
畫一張圖
檢驗你的猜想
圖形
普遍化
你以前見過它嗎?
這里有一道題目和你的題目有關
而且以前解過
探索法
探索式論證
如果你不能解所提的題目
歸納與數學歸納
創造者悖論
條件有可能滿足嗎?
萊布尼茨
引理
觀察未知量
現代探索法
符號
帕普斯
拘泥與變通
實際題目
求解題、證明題
進展與成績
謎語
歸謬法與間接證明
多余
常規題目
發現的規則
格式的規則
教學的規則
將條件的不同部分分開
建立方程
進展的標志,
特殊化
潛意識活動
對稱性
新舊術語
量綱檢驗
未來的數學家
聰明的解題者
聰明的讀者
傳統的數學教授
變化題目
未知量是什么?
為什么證明?
諺語的智慧
倒著干
第四部分 題目、提示、解答
題目
提示
解答
注釋
本文來自:快速記憶法 http://www.885221.com/dp-bbsthread-11539.html