歡迎來到記憶方法網-免費提供各種記憶力訓練學習方法!

江蘇省常州市高二上學期期末考試數學(文)試題

編輯: 路逍遙 關鍵詞: 高三 來源: 記憶方法網
試卷說明:

一、選擇題:本大題共14個小題,每小題5分,共70分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.命題“若,則”的否命題為 .2. 若直線經過點,且與直線垂直,則直線的方程為 .3. “”是成立”的 條件(在充分不必要, 必要不充分, 充要, 既不充分又不必要中選一個填寫)4.圓心為,且經過點的圓的標準方程為 ..【解析】試題分析:由題得半徑r=,根據圓的標準方程公式可得圓的標準方程為:.考點:圓的標準方程.5.(文科做)曲線在點()處的切線的斜率為 .6. 三棱錐的側棱兩兩垂直且長度分別為2cm,3cm,1cm,則的是 cm3.7.若雙曲線的漸近線方程為,則它的離心率為 ..【解析】試題分析:由雙曲線的漸近線方程為及性質可知,兩邊平方得,即.考點:雙曲線的幾何性質.8.已知點P在拋物線上運動,F為拋物線的焦點,點M的坐標為(3,2),當PM+PF取最小值時點P的坐標為 .考點:拋物線的定義與標準方程.9.已知圓C經過直線與坐標軸的兩個交點,且經過拋物線的焦點,則圓C的方程為 .10.已知動圓C與圓及圓都內切,則動圓圓心C的軌跡方程為 .11.(文科做)已知一個圓錐的母線長為3,則它的體積的最大值為 ..【解析】試題分析:可設圓錐底面半徑為r,高為h,則有則體積V=,0<h<3,再利用導數求這個三次函數的最大值即可.考點:(1)椎體的體積公式;(2)導數在函數中的應用.12.如圖正方體在面對角線上,下列四個命題:∥平面; ;面面;三棱錐的體積不變.其中正確的命題的是.13..若直線與曲線恰有一個公共點,則實數的取值范圍為 .14.已知橢圓:的軸長為2,離心率為,設過直線與橢圓交于不同的兩點AB,A,B作直線的垂線AP,BQ,垂足分別為P,Q., 若直線l的斜率,則的取值范圍.二、解答題 (本大題共6小題,共90分.解答應寫出文字說明、證明過程或演算步驟.) 15.(本小題滿分14分)已知為實數,:點在圓的內部; :都有.(Ⅰ)若為真命題,求的取值范圍;(Ⅱ)若為假命題,求的取值范圍;(Ⅲ)若“且”為假命題,且“或”為真命題,求的取值范圍.【答案】(Ⅰ) ;(Ⅱ);(Ⅲ).16.(本小題滿分14分)如圖,斜四棱柱的底面是矩形,平面⊥平面,分別為的中點. 求證:(Ⅰ);(Ⅱ)∥平面.17.(本小題滿分14分)已知拋物線的焦點為雙曲線的一個焦點,且兩條曲線都經過點.(Ⅰ)求這兩條曲線的標準方程;(Ⅱ)已知點在拋物線上,且它與雙曲線的左,右焦點構成的三角形的面積為4,求點 的坐標.法二:,∵雙曲線經過點,∴, ……………5分解得 ,.∴雙曲線的標準方程為. ……………………8分(Ⅱ)設點的坐標為,由題意得, ,∴, …………………11分∵點在拋物線上,∴,∴點的坐標為或. …………14分考點:(1)雙曲線的標準方程;(2)拋物線的標準方程.18.(本小題滿分16分)已知圓.(Ⅰ)若直線過點,且與圓相切,求直線的方程;(II)若圓的半徑為4,圓心在直線:上,且與圓內切,求圓 的方程.(II)依題意,設,由題意得,圓C的圓心圓C的半徑, . ……………12分∴, 解得 , ∴ 或. …………………14分∴圓的方程為 或. ………16分考點:直線與圓的位置關系.19.(本小題滿分16分)(文科做)已知函數,, .(Ⅰ)若,設函數,求的極大值;(II)設函數,討論的單調性.(II),∴. ………………9分若,,在上遞增; ……………………11分若,當時,,單調遞增;當時,,單調遞減. …………………14分∴當時,的增區間為,當時,的增區間為,減區間為. …………………16分考點:(1`)導數求單調性與極值;(2)分類討論數學思想.20.已知分別是橢圓的左,右頂點,點在橢圓 上,且直線與直線的斜率之積為.的標準方程;為橢圓上除長軸端點外的任一點,與橢圓的右準線分別交于點,.軸上是否存在,使得?若存在求的若不存在,說明理由,求的取值范圍.試題解析:(Ⅰ)由題意得,, , ∴,由點在橢圓C上,則有: , ……………………2分由以上兩式可解得..4分②∵, ,∴.,,∴. . …………………13分設函數,定義域為,當時,即時,在上單調遞減,的取值范圍為,當時,即時,在上單調遞減,在上單調遞增,的取值范圍為 .時,的取值范圍為,當時,的取值范圍為.16分考點:(1)橢圓的標準方程;(2)向量的坐標運算;(3)函數的單調性求值域.(第20題)(第12題圖)江蘇省常州市高二上學期期末考試數學(文)試題
本文來自:逍遙右腦記憶 /gaosan/1064865.html

相關閱讀:江西省宜春市上高二中2015屆高三下學期周考(一)數學(文)試題
內蒙古包頭一中2014屆高三下學期寒假補課檢測數學(理)試題 含
高考數學幾何證明選講復習課件和檢測題
精品解析:北京市海淀區2015屆高三上學期期中考試(數學理)
高三數學寒假作業試題


国内精品久久久久久久亚洲