包頭市三十三中2015學年度第一學期期中Ⅱ試卷高三年級文科數學本試卷共4頁,滿分150分,考試時間120分鐘。注意事項:1. 答題前,考生務必將自己的姓名、準考證號填在試題卷和答題紙指定位置上。2. 選擇題每小題選出答案后,用2B鉛筆將答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其他答案標號,答在試題卷上無效。3. 填空題和解答題用0.5毫米黑色墨水簽字筆答在答題紙上每題對應的答題區域內,答在試題卷上無效。 第Ⅰ卷(共60分)一、選擇題:(12×5=60)在每小題給出的四個答案中,只有一個答案是正確的。 1.設(是虛數單位),則 A. B. C. D. ABCD中,M、N分別為對角線BD和AC的中點,,,則AB與CD所成的角為( )A. B. C. D.在等差數列中,首項公差,若,則的值為A.37B.36 C.20 D.19 已知,則下列結論不正確的是( )A.a2a+b.平面向量與的夾角為60°,,則等于A.B.2C.4D.26.和直線平行,則( )A. B...7. 設是公差不為0的等差數列的前n項和,且成等比數列,則的值為( )A.1 B.2 C.3 D.48. 直線的傾斜角的取值范圍是 ( ) A. B. C. D. 9. 已知直線l⊥平面α,直線m平面β,有下列四個命題①α∥βl⊥m ②α⊥βl∥m ③l∥mα⊥β ④l⊥mα⊥β其中正確的兩個命題是( 。〢.①與② B.③與④ C.②與④ D.①與③10. 已知直線l:y=x+m與曲線有兩個公共點,則實數m的取值范圍是( ) A.(-2,2) B.(-1,1) C. D.11. 在平面直角坐標系中,若不等式組(為常數)所表示的平面區域內的面積等于2,則a的值為( )A. -5 B. 1 C. 2 D. 312. 已知直線,下列命題中真命題序號為____________.①直線的斜率為;②存在實數,使得對任意的,直線恒過定點;③對任意非零實數,都有對任意的,直線與同一個定圓相切;④若圓上到直線距離為1的點恰好3個,則.② ③④ D. ①③④第Ⅱ卷(共90分)二、填空題(每小題5分,共20分):13. 將函數y=sin2x按向量=(-,1)平移后的函數解析式是 .14、直線y=x-1上的點到圓x2++4x+2y+4=0的最近距離為_______.15. 北緯40°圈上有兩點A、B,這兩點緯度圈上的弧長為Rcos40°,則這兩點的球面距離為________.16. 已知正項等比數列{an}滿足:a7=a6+2a5,若存在兩項am,an使得=4a1,則+的最小值為將圓平分,且與直線垂直,求直線的方程 ;(2)求以點(2,-1)為圓心且與直線相切的圓的方程。18.(本題滿分12)已知函數.(I)求的最小正周期;(II)求在區間上的取值范圍.19. (本小題滿分12分)已知分別在射線(不含端點)上運動,,在中,角、、所對的邊分別是、、. (Ⅰ)若、、依次成等差數列,且公差為2.求的值; (Ⅱ)若,,試用表示的周長,并求周長的最大值.20、(本小題滿分12分)多面體的直觀圖及三視圖如圖所示,分別為的中點. (1)求證:平面;(2)求多面體的體積.數列的前項和,且是和的等差中項,等差數列滿足,(1)求數列、的通項公式;(2)設,數列的前項和為.22. (本小題滿分12分)已知圓C:x2+y2-2x+4y-4=0.問是否存在斜率為1的直線,使得被圓C截得的弦為AB,且以AB為直徑的圓經過原點?若存在,寫出直線的方程;若不存在,說明理由.包頭市三十三中2015學年度第一學期期中Ⅱ試卷高三年級文科數學答案一、題號 1 2 3 4 5 6 7 8 9101112答案BBADBBCDDCDC二13. ;14. -1; 15 R; 16. 三、解答題:17. (1)2x-y=0; …………5分; (2) ………………10分;18. 解:(I) --------------------2分 ---------------------------------------------3分 --------------------------------------------5分最小正周期為, --------------------------------7分(II)因為,所以 -------------------------9分所以 ------------------------------10分所以,所以取值范圍為.---------------12分19. 解(Ⅰ)、、成等差,且公差為2,、. 又,,, , 恒等變形得 ,解得或.又,. …………6分(Ⅱ)在中,, ,,. 的周長 ,………………………10分又,, 當即時,取得最大值. ……………………12分20. 證明:由多面體的三視圖知,三棱柱中,底面是等腰直角三角形,,平面,側面都是邊長為的正方形. 連結,則是的中點,在△中,, 且平面,平面,∴∥平面.…………………………………………4分; (2) 因為平面,平面, ,又⊥,所以,⊥平面,∴四邊形 是矩形,且側面⊥平面 取的中點,,且平面. 所以多面體的體積.………8分; (3)∵平面,∥,∴平面,∴,∵面是正方形,∴,∴,∴.(本題也可以選擇用向量的方法去解決)……………………12分;21. (1)∵是和的等差中項,∴ 當時,,∴ 當時,, ∴ ,即 ……………………………… 3分∴數列是以為首項,為公比的等比數列,∴, ……………………………………………………5分設的公差為,,,∴ ∴ ……………………………………………… 6分(2) ……………… 8分∴………… 10分∵,∴ ………………………………………… 11分. 所以, …………………………………………12分;22、解 假設存在,設其方程為y=x+m,代入x2+y2-2x+4y-4=0,得2x2+2(m+1)x+m2+4m-4=0.再設A(x1,y1),B(x2,y2),于是x1+x2=-(m+1),.以AB為直徑的圓經過原點,即直線OA與OB互相垂直,也就是kOA?kOB=-1,所以即2x1x2+m(x1+x2)+m2=0,將x1+x2=-(m+1),,代入整理得m2+3m-4=0,解得m=-4,或m=1.故所求的直線存在,且有兩條,其方程分別為x-y+1=0,x-y-4=0.內蒙古包頭三十三中2015屆高三上學期期中考試(數學文)
本文來自:逍遙右腦記憶 /gaosan/399403.html
相關閱讀:江西省宜春市上高二中2015屆高三下學期周考(一)數學(文)試題
內蒙古包頭一中2014屆高三下學期寒假補課檢測數學(理)試題 含
高考數學幾何證明選講復習課件和檢測題
精品解析:北京市海淀區2015屆高三上學期期中考試(數學理)
高三數學寒假作業試題