2015年托克遜縣第一中學九年級第二次診斷性測驗
數學(問卷) 阿斯熱古麗•乃扎木(2015.5.27)
注意事項:
1. 本卷共4頁,滿分150分,考試時間120分鐘。
2. 答題前,考生須將自己的姓名、準考證號、座位號填寫在指定的位置上。
3. 選擇題的每小題選出的答案、寫在答題卷的表格上。
4. 非選擇題必須按照題號順序在答題卡上個題目的答題區域內作答。超出答題區域或在其他題的答題區域內書寫的答案無效。在草稿紙、問卷上答題無效。
5. 作圖可選用2B鉛筆繪出圖、確定后必須用0.5毫米的黑色字跡的簽字筆描黑。
一、 選擇題(本大題共10小題、每小題5分,共50分)每題的選項中只有一項符合題目要求,請在答題卷的相應位置填正確選項.
1. -1.5的倒數是
A. B. C. 1.5 D. -3
2. 下列計算中,結果正確的是
A.2x2+3x3=5x5 B.2x3•3x2=6x6 C.2x3÷x2=2x D.(2x2)3=2x6
3. 下列水平放置的四個幾何體中,主視圖與其它三個不相同的是
A B C D
4. 下列說法正確的是
A、一個游戲的中獎概率是 ,則做10次這樣的游戲一定會中獎
B.為了解全國中學生的心理健康情況,應該采用普查的方式
C.一組數據6,8,7,8,8,9,10的眾數和中位數都是8
D.若甲組數據的方差S2甲=0.01,乙組數據的方差S2乙=0.1,則乙組數據比甲組數據穩定.
5. 若實數 滿足 ,則
A. -2 B. -1 C. 1 D. 2
6. 如圖,△ABC繞點A順時針旋轉80°得到△AEF,若∠B=100°,
∠F =50°,則∠α的度數是( )
A.40° B.50° C.60° D.70°
7. 擲一枚質地均勻的正方體骰子,骰子的六個面上分別刻有1到6的點數,擲得面朝上的點數大于4的概率為
A. B. C. D.
8. 如圖,△ABC內接于⊙O,AB=1,∠C=30°,則⊙O的內接正方形的面積為
A. 2 B. 4 C. 8 D. 16
9. 已知直線 與 軸, 軸分別交于A,B兩點,與函數 圖像交于E,F兩點,若AB=2EF,則 的值為
A. B. C. D. 1
10. 打開某洗衣機開關,在洗滌衣服時(洗衣機內無水),洗衣機經歷了進水、清洗、排水、脫水四個連續過程,其中進水、清洗、排水時洗衣機中的水量y(升)與時間x(分鐘)之間滿足某種函數關系,其函數圖象大致為
A B C D
二、填空題(本大題共6小題,每小題5分,共30分)
11. 某多邊形的每一個角都等于60°,則此多邊形的邊數 .
12. 如圖,在△ABC中,點D,E分別在AB,AC上,DE∥BC,
若AD=1,DE=2,BD=3,則 BC= .
13. 若一元一次方程 有實數根,則 的取值范圍是 .
14. 計算 .
15. 二次函數 的圖象如圖所示,則函數值y<0時
x的取值范圍是 .
16. 如圖,矩形ABCD中,AB=15?,點E在AD上,且
AE=9?,連接EC,將矩形ABCD沿直線BE翻折,點A恰好落在EC上的點A′處,
則A′C= ?.
三、 解答題(本大題共8題,共70分)
17.(6分) 解不等式組
18.(6分)實數 滿足 、求下列代數式的值:
19.(8分) 某服裝廠準備加工400套運動裝,在加工完160套后,采用了新技術,使得工作效率比原計劃提高了20?,結果共用了18天完成任務,問原計劃每天加工多少套服裝?
20.(7分) 如圖,已知點E、C在線段BF上,BE=CF,
AB∥DE,AB=DE,求證:AC∥DF
21.(8分) 如圖,電線桿AB直立與地面上,它的影子恰好照
在土坡 的坡面CD和地面BC上,若CD與地面成45°角,
∠A=60°, CD=4 ,BC= ,求電線桿AB的長
為多少 ?
22.(10分) 如圖,以AB為直徑的⊙O交AP點E,點C是⊙O上一點,且AC平分∠PAB,過點C作CD⊥PE,垂足為點D.
(2) 求證:CD是⊙O的切線;
(3) 若sin∠ECA= ,DE=2,求⊙O的半徑.
23.(13分) 為了了解我校九年級有400名學生的本次數學模擬考試成績情況,隨機抽取一個班的學生成績進行統計,并繪制如下圖表:
分數 頻數 頻率
0.125
10 0.25
15
清你根據以上信息,解答下列問題:
(1) 寫出 的值并補全直方圖;
(2) 規定90分及以上為及格,請你估計我校九年級共有多少名學生本次成績及格;
(3) 我們將成績高于85分低于90分的學生為“希望生”.若抽取的該班有2名“希望生”,現從分數在 的學生中隨機選取兩名同學參加輔導.請求出所選兩名同學至少有一名是“希望生”的概率.
24.(12分)在平面直角坐標系 中,拋物線 經過A(-3,0)、B(4,0)兩點,且與y軸交于點C,點D在x軸的負半軸上,且BD=BC,有一動點P從點A出發,沿線段AB以每秒1個單位長度的速度向點B移動,同時另一個動點Q從點C出發,沿線段CA以某一速度向點A移動.
(1)求該拋物線的解析式;
(2)若經過t秒的移動,線段PQ被CD垂直平分,求此時
t的值;
(3)該拋物線的對稱軸上是否存在一點M,使MQ+MA的值
最?若存在,求出點M的坐標;若不存在,請說明理由.
2015年托克遜縣第一中學九年級第二次診斷性測驗
數學答案
一、 選擇題:(5*10=50)
1. A 2.C 3.C 4.C 5.B 6. B 7. B 8. A 9. C 10. D
二、 填空題:(5*6=30)
11. 3 12. 8 13. 14. 3 15. 16.
三、解答題:
17. 解:解不等式①、得 ……………………..2分
解不等式②、得 ………………………..2分
…………...1分
所以不等式組的解集為 …..………1分
18. 解:因為 滿足
所以 即 ………………….2分
因為
……………………………..2分
所以原式= -7……………………………………..2分
19. 解:設原計劃每天加工 套服裝,得…………..2分
…………….2分
解得, ……………………3分
答:原計劃每天加工20套服裝…………………1分
20. 證明:因為BE=CF
所以BE+EC=CF+EC
即 BC=EF…………………………………1分
因為AB∥DE
所以∠B=∠E ………………………………1分
在△ABC與△DEF中,AB=DE, ∠B=∠E, BC=EF
所以△ABC≌△DEF(SAS)………………3分
所以∠C=∠F 所以AC∥DF…………2分
21. 解:令AD的延長線與地面BC的交點為E, 作DF垂直BE.
因為∠DCF=45° 所以CF=DF;
因為CD=4 所以CF=DF = = ………………2分
因為在△ABE中,∠A=60° 所以∠B=30°
所以Rt△DFE中,EF= = = …………………2分
所以BE=BC+CF+FE= …………1分
所以Rt△ABE中AB= …………………2分
所以電線桿的長為 ………………………………………1分
22. (1)證明:因為AC 平分∠PAB 所以∠PAC=∠CAB………………1分
因為OA=OB 所以∠OAC=∠OCA ……………1分
所以∠PAC=∠OCA 所以AP∥OC……………………1分
因為CD⊥AP 所以CD⊥OC……………………1分
所以∠OCD=90° 所以CD是⊙O的切線…………1分
(2)解:連接BE與AC相交于點F,
因為AB為直徑, 所以∠AEB=90°
因為AP∥OC 所以BE⊥OC與點F,
因為∠ECA=∠B 所以sin∠ECA=sin∠B=
因為四邊形EFCD是正方形 所以FC=DE=2
Rt△BFO中sin∠B= OF=OC-CF=OC-2 OB=OC
所以 解得OC=5
所以⊙O的半徑為5.
23.(1)解:設總數為 ,得 解得 …………………………1分
所以 …………………………………………1分
,……………………………………………1分
……………………………………1分
…………………………1分
補全直方圖給2分.
(2)解:90分及以上的學生人數的頻數約為0.25+0.375+0.25=0.875
所以我校九年級共有0.875×400=350名學生本次成績及格……2分
(3)解:設分數在 的學生為 ,“希望生”為
則利用列表法或樹狀圖來表示……………………………………2分
P(所選兩名同學至少有一名是“希望生”)= ………………1分
24.解:(1)∵拋物線 經過A(-3,0),B(4,0)兩點,
∴ 解得
∴所求拋物線的解析式為 . ……………………………3分
(2)如圖,依題意知AP=t,連接DQ,
由A(-3,0),B(4,0),C(0,4),
可得AC=5,BC= ,AB=7.
∵BD=BC,
∴ . …………………………4分
∵CD垂直平分PQ,∴QD=DP,∠CDQ= ∠CDP.
∵BD=BC,∴∠ DCB= ∠CDB.
∴∠CDQ= ∠DCB.∴DQ∥BC. …………………………6分
∴△ADQ∽△ABC.∴ .∴ .
∴ .解得 . …………………7分
∴ . …………………………8分
∴線段PQ被CD垂直平分時,t的值為 . [來源:學科網ZXXK]
(3)設拋物線 的對稱軸 與x軸交于點E.
點A、B關于對稱軸 對稱,連接BQ交該對稱軸于點M.
則 ,即 .…………9分
當BQ⊥AC時,BQ最小. ………………10分
此時,∠EBM= ∠ACO.
∴ .
∴ .∴ ,
解得 . ………………11分
∴M( , ). ………………………12分
即在拋物線 的對稱軸上存在一點M( , ),使得MQ+MA的值最小.
本文來自:逍遙右腦記憶 /chusan/328751.html
相關閱讀:2015中考數學壓軸題動態幾何之線動形成的等腰三角形存在專題試題
2012年九年級上冊數學期中適應性測試卷
白銀市平涼市2013年中考數學試卷解析
深圳市2013年中考數學試卷解析
揚州市2013年中考數學試題(有答案)