歡迎來到記憶方法網-免費提供各種記憶力訓練學習方法!

2013高一上學期數學期末聯考試題(有答案)

編輯: 路逍遙 關鍵詞: 高一 來源: 記憶方法網
(考試時間:2013年1月25日上午8:30-10:30 滿分:100分)
第Ⅰ卷(,共30分)
一、:(本大題共10小題,每小題3分,共30分)
1.設集合 , ,則 ( )
A. B. C. D.
2. 已知 ,則 點 位于( )
A.第一象限 B.第二象限     C.第三象限 D.第四象限
3.設 是定義在R上的奇函數,當 時, ,則 的值是 ( )
A. B. C.1         D.3
4.下列各組函數中表示同一函數的是 (  )
A. 與
B. 與
C. 與
D. 與
5. 設 是不共線的兩個向量,已知 , , .若
三點共線,則 的值為 (  )
A.1 B.2 C.-2 D.-1
6.下列函數中,既是偶函數,又在區間 上單調遞減的是( )
A. B. C. D.
7.在平行四邊形 中, ,則必有( )
A. B. 或 C. 是矩形 D. 是正方形
8. 設函數 ,則下列結論正確的是( )
A. 的圖像關于直線 對稱
B. 的圖像關于點( 對稱
C. 的圖像是由函數 的圖象向右平移 個長度單位得到的
D. 在 上是增函數。
9.函數 的圖象可能是 ( )
10.設函數 滿足 ,且當 時, .又函數 ,則函數 在 上的零點個數為 ( )
A. 5 B. 6 C. 7 D. 8
第Ⅱ卷(非選擇題,共70分)
二、題:(本大題共5小題,每小題3分,共15分)
11. 若 ,則 ;
12.已知冪函數 過點 ,則 的值為 ;
13. 已知單位向量 的夾角為60°,則 __________;
14. 在平面直角坐標系 中,以 軸為始邊作銳角 ,角 的終邊與單位圓交于點A,若點A的橫坐標為 ,則 ;
15.用 表示a,b兩數中的最小值。若函數 的圖像關于直線x= 對稱,則t的值為 .
三、解答題:(本大題共6小題,共55分.解答應寫出文字說明,證明過程和解題過程.)
16.(本小題滿分9分)
設集合 ,
(I)若 ,試判定集合A與B的關系;
(II)若 ,求實數a的取值集合.
17.(本小題滿分9分)
已知 , ,函數 ;
(I)求 的最小正周期;
(II)求 在區間 上的最大值和最小值。
19 .(本小題滿分9分)
某服裝廠某年1月份、2月份、3月份分別生產某名牌衣服1萬件、 萬件、 萬件,為了 估測當年每個月的產量,以 這三個月的產品數量為依據,用一個函數模型模擬該產品的月產量 與月份 的關系,模擬函數可選用函數 (其中 為常數)或二次函數。又已知當年4月份該產品的產量為 萬件,請問用以上哪個函數作為模擬函數較好,并說明理由。
20.(本小題滿分9分)
在平面直角坐標系中,已知向量 又點
(I)若 求向量 的坐標;
(II) 若向量 與向量 共線,當 取最大值時,求 .
21.(本小題滿分10分)
已知實數 ,函數 .
(I)討 論 在 上的奇偶性;
(II)求函數 的單調區間;
(III)求函數 在閉區間 上的最大值。
普通高中2014?2013學年第一學期三明一、二中聯合考試
高一數學試題參考答案
三、解答題(本大題共6小題,共55分)
16、(本小題滿分9分)
解: (I)由 得 或 ,故A={3,5}
當 時,由 得 .故 真包含于A. …………4分
(II)當B= 時,空集 ,此時 ;…… ……5分
當B 時, ,集合 , ,此時 或 , 或
綜上,實數a的取值集合 ………9分
考查集合的有關概念;考查基本運算能力、分類與整合思想。
17、(本小題滿分9分)
解:(法一)(I) ,
函數 的最小正周期為 ;…………4分
(II)因為 ,…………5分
所以, 當 即 時,函數 取得最大值2;
當 即 時,函數 取得最小值 ;…………9分
(法二)(I) ,
函數 的最小正周期為 ;…………4分
(II)因為 ,…………5分
所以,當 即 時,函數 取得最大值2;
當 即 時,函數 取得最小值 ;…………9分
考查平面向量的數量積概念;三角函數中兩角和的正、余弦公式、二倍角公式;三角函數的周期、單調、最值等性質;考查三角函數與平面向量的綜合運用能力和化歸與轉化思想。
18、(本小題滿分9分)
解:(I) , …………3分
………7分
…………9分
考查三角函數的圖像與性質、同角三角函數的關系、誘導公式、和角公式;考查基本運算能力、數形結合思想。
19、(本小題滿分9分)
解:設
依題意: 解得
故 ………4分

依題意: 解得
故 ………8分
由以上可知,函數 作為模擬函數較好!9分
考查二次函數、指數型函數知識;考查運算求解能力、數據處理能力和選擇函數模型能力。
20、(本小題滿分9分)
解:(I) 因為 所以,
故 …………4分
(II)因為向量 與向量 共線, ,
所以, , ,…………6分
………7分
故,當 時, 取最大值4,此時,
所以, …………9分
考查平面向量的共線、垂直、數量積概念和平面向量的坐標運算,考查二次函數的最值與平面向量、三角函數知識的綜合運用能力、化歸與轉化和函數與方程思想。
21、(本小題滿分10分)
解:(I)當 時, ,因為 ,故 為奇函數;
當 時, 為非奇非偶函數………2分
(II)當 時, 故函數 的增區間 ……3分
當 時,
故函數 的增區間 ,函數 的減區間 ………5分
(III)①當 即 時 , ,
當 時, , 的最大值是
當 時, , 的最大值是 ………7分
② 當 即 時, , ,
,
所以,當 時, 的最大值是 ………9分
綜上,當 時, 的最大值是
當 時, 的最大值是 ………10分


本文來自:逍遙右腦記憶 /gaoyi/60412.html

相關閱讀:福建省長樂二中等五校2015-2016學年高一上學期期中聯考數學試題
對數同步檢測題(有答案))
【名師解析】內蒙古包頭市一中2015-2016學年高一上學期期中考試
江西省高安二中2013-2014年度高一上學期期中考試數學試題(奧賽
云南省瀘西縣瀘源中學2015—2015學年高一上學期期中考試數學試題


国内精品久久久久久久亚洲