有理數的加法運算:同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好.“大”減“小”是指絕對值的大。
合并同類項:合并同類項,法則不能忘,只求系數和,字母、指數不變樣.
去、添括號法則:去括號、添括號,關鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號.
恒等變換:兩個數字來相減,互換位置最常見,正負只看其指數,奇數變號偶不變.(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n.
平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆.
完全平方:完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項符號隨中央.
因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚.
“代入”口決:挖去字母換上數(式),數字、字母都保留;換上分數或負數,給它帶上小括弧,原括弧內出(現)括弧,逐級向下變括。ㄐ 小螅
單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行.
一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號,同類項、合并好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了.
一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找.
一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,小(魚)于(吃)取中間.
分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡.
分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊.
最簡根式的條件:最簡根式三條件,號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點.
特殊點坐標特征:坐標平面點(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個象限分前后;X軸上y為0,x為0在Y軸.
象限角的平分線:象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱確相反.
平行某軸的直線:平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行于Y軸,點的橫坐標仍照舊.
對稱點坐標:對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號.
自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行.
函數圖像的移動規律:若把一次函數解析式寫成y=k(x+0)+b、二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”.
首頁上一頁12下一頁末頁共2頁
本文來自:逍遙右腦記憶 /gaozhong/1010960.html
相關閱讀:高中數學:扇形的面積公式_高中數學公式
科學把握數學新課標
三角函數圖象性質
高中數學學習方法:高二數學復習八大原則
高考數學復習:系統梳理 重點掌握