歡迎來到記憶方法網-免費提供各種記憶力訓練學習方法!

高一數學重要知識點總結

編輯: 路逍遙 關鍵詞: 高中數學 來源: 記憶方法網

【導語】人生要敢于理解挑戰,經受得起挑戰的人才能夠領悟人生非凡的真諦,才能夠實現自我無限的超越,才能夠創造魅力永恒的價值。以下是逍遙右腦為你整理的《高一數學重要知識點總結》,希望你不負時光,努力向前,加油!

  【一】

  復數是高中代數的重要內容,在高考試題中約占8%-10%,一般的出一道基礎題和一道中檔題,經常與三角、解析幾何、方程、不等式等知識綜合.本章主要內容是復數的概念,復數的代數、幾何、三角表示方法以及復數的運算.方程、方程組,數形結合,分域討論,等價轉化的數學思想與方法在本章中有突出的體現.而復數是代數,三角,解析幾何知識,相互轉化的樞紐,這對拓寬學生思路,提高學生解綜合習題能力是有益的.數、式的運算和解方程,方程組,不等式是學好本章必須具有的基本技能.簡化運算的意識也應進一步加強.

  在本章學習結束時,應該明確對二次三項式的因式分解和解一元二次方程與二項方程可以畫上圓滿的句號了,對向量的運算、曲線的復數形式的方程、復數集中的數列等邊緣性的知識還有待于進一步的研究.

  1.知識網絡圖

  復數知識點網絡圖

  2.復數中的難點

  (1)復數的向量表示法的運算.對于復數的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應認真體會復數向量運算的幾何意義,對其靈活地加以證明.

  (2)復數三角形式的乘方和開方.有部分學生對運算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應對此認真地加以訓練.

  (3)復數的輻角主值的求法.

  (4)利用復數的幾何意義靈活地解決問題.復數可以用向量表示,同時復數的模和輻角都具有幾何意義,對他們的理解和應用有一定難度,應認真加以體會.

  3.復數中的重點

  (1)理解好復數的概念,弄清實數、虛數、純虛數的不同點.

  (2)熟練掌握復數三種表示法,以及它們間的互化,并能準確地求出復數的模和輻角.復數有代數,向量和三角三種表示法.特別是代數形式和三角形式的互化,以及求復數的模和輻角在解決具體問題時經常用到,是一個重點內容.

  (3)復數的三種表示法的各種運算,在運算中重視共軛復數以及模的有關性質.復數的運算是復數中的主要內容,掌握復數各種形式的運算,特別是復數運算的幾何意義更是重點內容.

  (4)復數集中一元二次方程和二項方程的解法.

  【二】

  一、集合有關概念

  1.集合的含義

  2.集合的中元素的三個特性:

 。1)元素的確定性如:世界上最高的山

  (2)元素的互異性如:由HAPPY的字母組成的集合H,A,P,Y

 。3)元素的無序性:如:a,b,c和a,c,b是表示同一個集合

  3.集合的表示:…如:我校的籃球隊員,太平洋,大西洋,印度洋,北冰洋

 。1)用拉丁字母表示集合:A=我校的籃球隊員,B=1,2,3,4,5

 。2)集合的表示方法:列舉法與描述法。

  注意:常用數集及其記法:XKb1.Com

  非負整數集(即自然數集)記作:N

  正整數集:N*或N+

  整數集:Z

  有理數集:Q

  實數集:R

  1)列舉法:a,b,c……

  2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合x-3>2,x-3>2

  3)語言描述法:例:不是直角三角形的三角形

  4)Venn圖:

  4、集合的分類:

  (1)有限集含有有限個元素的集合

  (2)無限集含有無限個元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  二、集合間的基本關系

  1.“包含”關系?子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關系:A=B(5≥5,且5≤5,則5=5)

  實例:設A=x2-1=0B=-1,1“元素相同則兩集合相等”

  即:①任何一個集合是它本身的子集。AA

  ②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄B,BC,那么AC

 、苋绻鸄B同時BA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4.子集個數:

  有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

  三、集合的運算

  運算類型交集并集補集

  定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

  由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB=xA,或xB).

  設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  記作,即

  CSA=

  AA=A

  AΦ=Φ

  AB=BA

  ABA

  ABB

  AA=A

  AΦ=A

  AB=BA

  ABA

  ABB

  (CuA)(CuB)

  =Cu(AB)

  (CuA)(CuB)

  =Cu(AB)

  A(CuA)=U

  A(CuA)=Φ.

  二、函數的有關概念

  1.函數的概念

  設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合f(x)叫做函數的值域.

  注意:

  1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。

  求函數的定義域時列不等式組的主要依據是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開方數不小于零;

  (3)對數式的真數必須大于零;

  (4)指數、對數式的底必須大于零且不等于1.

  (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

  (6)指數為零底不可以等于零,

  (7)實際問題中的函數的定義域還要保證實際問題有意義.

  相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);

 、诙x域一致(兩點必須同時具備)

  2.值域:先考慮其定義域

  (1)觀察法(2)配方法(3)代換法

  3.函數圖象知識歸納

  (1)定義:

  在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.

  (2)畫法

  1.描點法:2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對稱變換

  4.區間的概念

  (1)區間的分類:開區間、閉區間、半開半閉區間(2)無窮區間(3)區間的數軸表示.

  5.映射

  一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作“f(對應關系):A(原象)B(象)”

  對于映射f:A→B來說,則應滿足:

  (1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;

  (2)集合A中不同的元素,在集合B中對應的象可以是同一個;

  (3)不要求集合B中的每一個元素在集合A中都有原象。

  6.分段函數

  (1)在定義域的不同部分上有不同的解析表達式的函數。

  (2)各部分的自變量的取值情況.

  (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.

  補充:復合函數

  如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數。

  二.函數的性質

  1.函數的單調性(局部性質)

 。1)增函數

  設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1

  如果對于區間D上的任意兩個自變量的值x1,x2,當x1

  注意:函數的單調性是函數的局部性質;

  (2)圖象的特點

  如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

  (3).函數單調區間與單調性的判定方法

  (A)定義法:

  (1)任取x1,x2∈D,且x1

 。2)作差f(x1)-f(x2);或者做商

  (3)變形(通常是因式分解和配方);

 。4)定號(即判斷差f(x1)-f(x2)的正負);

 。5)下結論(指出函數f(x)在給定的區間D上的單調性).

  (B)圖象法(從圖象上看升降)

  (C)復合函數的單調性

  復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”

  注意:函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫成其并集.

  8.函數的奇偶性(整體性質)

 。1)偶函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

 。2)奇函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=?f(x),那么f(x)就叫做奇函數.

 。3)具有奇偶性的函數的圖象的特征:偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.

  9.利用定義判斷函數奇偶性的步驟:

  ○1首先確定函數的定義域,并判斷其是否關于原點對稱;

  ○2確定f(-x)與f(x)的關系;

  ○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.

  注意:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數的圖象判定.

  10、函數的解析表達式

 。1)函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

 。2)求函數的解析式的主要方法有:1.湊配法2.待定系數法3.換元法4.消參法

  11.函數最大(。┲

  ○1利用二次函數的性質(配方法)求函數的最大(。┲

  ○2利用圖象求函數的最大(。┲

  ○3利用函數單調性的判斷函數的最大(。┲担

  如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);

  如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

  第三章基本初等函數

  一、指數函數

 。ㄒ唬┲笖蹬c指數冪的運算

  1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.

  負數沒有偶次方根;0的任何次方根都是0,記作。

  當是奇數時,,當是偶數時,

  2.分數指數冪

  正數的分數指數冪的意義,規定:

  ,

  0的正分數指數冪等于0,0的負分數指數冪沒有意義

  3.實數指數冪的運算性質

 。1)•;

 。2);

 。3).

 。ǘ┲笖岛瘮导捌湫再|

  1、指數函數的概念:一般地,函數叫做指數函數,其中x是自變量,函數的定義域為R.

  注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

  2、指數函數的圖象和性質

  a>10

  定義域R定義域R

  值域y>0值域y>0

  在R上單調遞增在R上單調遞減

  非奇非偶函數非奇非偶函數

  函數圖象都過定點(0,1)函數圖象都過定點(0,1)

  注意:利用函數的單調性,結合圖象還可以看出:

 。1)在[a,b]上,值域是或;

  (2)若,則;取遍所有正數當且僅當;

  (3)對于指數函數,總有;

  二、對數函數

 。ㄒ唬⿲

  1.對數的概念:

  一般地,如果,那么數叫做以為底的對數,記作:(?底數,?真數,?對數式)

  說明:○1注意底數的限制,且;

  ○2;

  ○3注意對數的書寫格式.

  兩個重要對數:

  ○1常用對數:以10為底的對數;

  ○2自然對數:以無理數為底的對數的對數.

  指數式與對數式的互化

  冪值真數

 。絅=b

  底數

  指數對數

 。ǘ⿲档倪\算性質

  如果,且,,,那么:

  ○1•+;

  ○2-;

  ○3.

  注意:換底公式:(,且;,且;).

  利用換底公式推導下面的結論:(1);(2).

 。3)、重要的公式①、負數與零沒有對數;②、,③、對數恒等式

 。ǘ⿲岛瘮

  1、對數函數的概念:函數,且叫做對數函數,其中是自變量,函數的定義域是(0,+∞).

  注意:○1對數函數的定義與指數函數類似,都是形式定義,注意辨別。如:,都不是對數函數,而只能稱其為對數型函數.

  ○2對數函數對底數的限制:,且.

  2、對數函數的性質:

  a>10

  定義域x>0定義域x>0

  值域為R值域為R

  在R上遞增在R上遞減

  函數圖象都過定點(1,0)函數圖象都過定點(1,0)

  (三)冪函數

  1、冪函數定義:一般地,形如的函數稱為冪函數,其中為常數.

  2、冪函數性質歸納.

  (1)所有的冪函數在(0,+∞)都有定義并且圖象都過點(1,1);

 。2)時,冪函數的圖象通過原點,并且在區間上是增函數.特別地,當時,冪函數的圖象下凸;當時,冪函數的圖象上凸;

 。3)時,冪函數的圖象在區間上是減函數.在第一象限內,當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.

  第四章函數的應用

  一、方程的根與函數的零點

  1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。

  2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。

  即:方程有實數根函數的圖象與軸有交點函數有零點.

  3、函數零點的求法:

  ○1(代數法)求方程的實數根;

  ○2(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點.

  4、二次函數的零點:

  二次函數.

  (1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.

 。2)△=0,方程有兩相等實根,二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

 。3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.

  5.函數的模型


本文來自:逍遙右腦記憶 /gaozhong/1178149.html

相關閱讀:高中數學:扇形的面積公式_高中數學公式
三角函數圖象性質
科學把握數學新課標
高考數學復習:系統梳理 重點掌握
高中數學學習方法:高二數學復習八大原則


国内精品久久久久久久亚洲