(1) ҎľҎ}ھԼslµֵ};
(2) cƽ֪RYϵֵ};
(3) ڷǾԼslµֵ};
(4) 龀Ҏ}ڽQHaHеđ.еĵ(2)(3)(4)c}Ąc
1 Of(θ)=?3?sin?θ+??cos?θθccԭcغʼ߅cxSؓSغϣK߅^c?P(x,y)?0≤θ≤?π?
(1) cP˞12,32f(θ)ֵ;
(2) cP(x,y)ƽ^Ωx+y≥1,x≤1,y≤1 ϵһcԇ_θȡֵf(θ)Сֵֵ
(1)ֻҪ\ǺĶx;(2)ֻҪȮƽ^Ωٸ鮋ƽ^_θȡֵMDf(θ)=a?sin?θ+b?cos?θͺֵ
(1) cP˺ǺĶxɵ?sin?θ=32?cos?θ=12
f(θ)=3?sin?θ+??cos?θ=?3×32+12=2
(2) ƽ^Ω (΅^ABC)DʾA(1,0)B(1,1)?C(0,1)?.0≤θ≤?π?2,
f(θ)=3?sin?θ+?cos?θ=2?sin?θ+?π?6
?π?6≤θ+??π?6≤?2?π?3
ʮθ+?π?6=?π?2θ=?π?3rf(θ)ȡֵֵ2;
θ+?π?6=?π?6θ=0rf(θ)ȡСֵСֵ1
cu }еcԽ}ʽҎеĻAƽ^cǺֵM˵ЙCCϣ^ȥv߿ҎвҊ
ʽ
ʽDzʽҪ,Ҳǚv߿c֪R֮һđÎ漰Wе¹,߿}cǴСДࡢֵ.}ԇ}yȲĸ߿ԇ}ҲF˲ٿʽČHÆ}
2 WоijλWČWrlF@λWW֪R1tx Ĵy?1=4x+4;t(t>0)rMеһΏt˕r@ƺδrһ(ĕrgԲӋ)y?2Srg׃ǡÞֱһ֣бʞa(t+4)?2(?a
(1) a=-1,t=5“ΏѕrCc”;
(2) F“ΏѕrCc”aȡֵ
PIǷD}ĿʾĺxPϵûʽֵ
OһΏĴcĴ֮y
}֪y?2=a(t+4)?2(?x-?t)+8t+4(?t>?4),
y=y?2-y?1=a(t+4)?2(x-t)+8t+4-4x+4(t>4)
a=-1,t=5r
y=-1(5+4)?2(x-5)+85+4-4x+4
=-(x+4)81-4x+4+?1≤?-2481+1=59
҃Hx=14 rȡ̖“ΏѕrCc”14.
(2) y=a(t+4)?2(x-t)+8t+4-4x+4?=--a(x+4)(t+4)?2-?4x+4+8t+4-a(t+4)(t+4)?2?≤-2-4a(t+4)?2+?8-at+4҃H-a(x+4)(t+4)?2?=4x+4?x=2-a(t+4)-4 rȡ̖
}2-a(t+4)-4>t-4
cu ʽÿ߿ЎǏIJȱϯPIҪע\ûʽėlһ
ʽ
3 چ}“֪PxIJʽax?2+bx+c>0Ľ⼯(-1,2)PxIJʽax?2-bx+c>0”oһNⷨ
ⷨPxIJʽkx+a+x+bx+c<0Ľ⼯-1,-13∪12,1tPxIJʽkxax+1+bx+1cx+1<0Ľ⼯? ?
^lFax?2+?bx+?c>0xQ?-x??a(-x)?2+?b(-x)+c>0t⼯Ҳ׃-x∈(-1,2)t?x∈?(-2,1)ʽkx+a+x+bx+c<0xQ1xòʽkxax+1+bx+1cx+1<01x∈-1,-13∪12,1ɵô
ax?2+bx+c>0Ľ⼯(-1,2)a(-x)?2+b(-x)+c>0Ľ⼯(?-2?,1)PxIJʽax?2-bx+c>0Ľ⼯(-2,1)
PxIJʽkx+a+x+bx+c<0Ľ⼯-1,?-13?∪12,1
tPxIJʽkxax+1+bx+1cx+1<0Ŀɿkx+a+x+bx+c<0еx1xɵãt1x∈?-1?,-13∪12,1Ķx∈(-3,?-1?)∪(1,2),ʴ𰸞(-3,-1)∪(1,2)
cu }һԪβʽԼʽʽͨ^֪llFҎɣ̽}
Cʽ֮Գɞ߿нòϢԇc҄ⲻ.˲ʽ֪RЌWWоSăȺͻĵλcߵȔWFoܵPϵҲҪԭ֮һ.ڸ߿}ʽcc֪R·fĽMԼcߵȔWϵھʽڬFͿƌWоеďVьW˼뷽͔WRԼȫµ龰ЌWWBȵĿxڲʽĿ֮Ǹ߿ʽһc
ţСԇ
1a>0,b>0Һf(x)=4x?3-ax?2-2bx+2x=1̎ИOֵtabֵ.??
2. PxIJʽx?2-(a+1)x+a<0֮͞27taȡֵ.
𰸡
1f′(x)=12x?2-2ax-2bf(x)?x=?1̎ИOֵ
∴f′(1)=012-2a-?2b=?0?a+?b=6
a>0,b>0∴ab≤a+b2?2=9҃H?a=??b=?3rabֵֵ9
2. x?2-(a+1)x+a<0(x-1)(x-a)<0}֪a≤1tܝM㲻ʽx?2-(a+1)x+a<0֮͞27a>1(x-1)(x-a)<0?1
_̣x}
M룺
ԇl
āԣbXӛ /gaozhong/201392.html
PxДWW߶W˴ԭt
ǺD|
ƌWՔWn
߿Wϵy c
ДWεeʽ_ДWʽ