教案19 函數性質綜合運用
一、前檢測
1. 函數 的定義域是_____________________.答案: 或
2. 已知 ,
則 的最大值為 . 答案:6
3. 函數 的單調遞增區間是___________________.答案:
4. 表示 、 、 三個數中的最大值,則 在區間 上的最大值 和最小值 分別是( C )
A. , B. , C. , D. ,
二、典型例題分析
例1 (東城期末15)已知函數 , 且 .
(Ⅰ)求 的定義域;
(Ⅱ)判斷 的奇偶性并予以證明;
(Ⅲ)當 時,求使 的 的取值范圍.
解: (Ⅰ) ,則
解得 .
故所求定義域為 .………………………………………………4分
(Ⅱ)由(Ⅰ)知 的定義域為 ,
且 ,
故 為奇函數. ………………………………………………………………9分
(Ⅲ)因為當 時, 在定義域 內是增函數,
所以 .
解得 .
所以使 的 的取值范圍是 .………………………………13分
小結與拓展:解決對數函數問題,首先要注意函數的定義域,在定義域內研究函數的相關性質。
例2 已知函數f(x)=x2+x-a+1,a∈R.?
(1)試判斷f(x)的奇偶性;?
(2)若- ≤a≤ ,求f(x)的最小值.
解:(1)當a=0時,函數f(-x)=(-x)2+-x+1=f(x),?
此時,f(x)為偶函數.當a≠0時,f(a)=a2+1,f(-a)=a2+2a+1,?
f(a)≠f(-a),f(a)≠-f(-a),此時,f(x) 為非奇非偶函數.?
(2)當x≤a時,f(x)=x2-x+a+1=(x- )2+a+ ,?
∵a≤ ,故函數f(x)在(-∞,a]上單調遞減,?
從而函數f(x)在(-∞,a]上的最小值為f(a)=a2+1.?
當x≥a時,函數f(x)=x2+x-a+1=(x+ )2-a+ ,?
∵a≥- ,故函數f(x)在[a,+∞)上單調遞增,從而函數f(x)在[a,+∞)上的
最小值為f(a)=a2+1.?
綜上得,當- ≤a≤ 時,函數f(x)的最小值為a2+1.
小結與拓展:注意對參數的討論
例3 (2006重慶)已知定義域為 的函數 是奇函數。
(1)求 的值;
(2)若對任意的 ,不等式 恒成立,求 的取值范圍;
解:(1) 因為 是R上的奇函數,所以
從而有 又由 ,解得
(2)解法一:由(1)知
由上式易知 在R上為減函數,又因 是奇函數,從而不等式
等價于
因 是R上的減函數,由上式推得
即對一切 從而
解法二:由(1)知
又由題設條得
即
整理得 ,因底數2>1,故
上式對一切 均成立,從而判別式
變示訓練:已知 是定義在 上的奇函數,且當 時, 為增函數,則不等式
的解集為 .答案:
小結與拓展:本題是一個綜合題,需靈活運用函數的性質解決。
四、歸納與(以學生為主,師生共同完成)
1.知識:
2.思想與方法:
3.易錯點:
4.教學反思(不足并查漏):
本文來自:逍遙右腦記憶 /gaosan/38925.html
相關閱讀:高中數學競賽標準教材(第十章直線與圓的方程)
高三數學理科復習:函數解析式
2012屆高考數學知識算法初步與框圖復習講義
集合與簡易邏輯
2012屆高考數學三角函數知識導航復習教案