不等式小結與復習(1)
目的:
1.掌握常用基本不等式,并能用之證明不等式和求最值;
2.掌握含絕對值的不等式的性質;
3.會解簡單的高次不等式、分式不等式、含絕對值的不等式、簡單的無理不等式、指數不等式和對數不等式.學會運用數形結合、分類討論、等價轉換的思想方法分析和解決有關
過程:
一、復習引入:本知識點
二、講解范例:幾類常見的問題
(一)含參數的不等式的解法
例1解關于x的不等式 .
例2解關于x的不等式 .
例3解關于x的不等式 .
例4解關于x的不等式
例5 滿足 的x的集合為A;滿足 的x
的集合為B 1 若AB 求a的取值范圍 2 若AB 求a的取值范圍 3 若A∩B為僅含一個元素的集合,求a的值.
(二)函數的最值與值域
例6 求函數 的最大值,下列解法是否正確?為什么?
解一: ,∴
解二: 當 即 時,
例7 若 ,求 的最值。
例8 已知x , y為正實數,且 成等差數列, 成等比數列,求 的取值范圍.
例9 設 且 ,求 的最大值
例10 函數 的最大值為9,最小值為1,求a,b的值。
三、作業:
1.
2. , 若 ,求a的取值范圍
3.
4.
5.當a在什么范圍內方程: 有兩個不同的負根
6.若方程 的兩根都對于2,求實數m的范圍
7.求下列函數的最值:
1
2
8.1 時求 的最小值, 的最小值
2設 ,求 的最大值
3若 , 求 的最大值
4若 且 ,求 的最小值
9.若 ,求證: 的最小值為3
10.制作一個容積為 的圓柱形容器(有底有蓋),問圓柱底半徑和
高各取多少時,用料最?(不計加工時的損耗及接縫用料)
本文來自:逍遙右腦記憶 /gaoer/40238.html
相關閱讀:函數的和差積商的導數學案練習題
合情推理
基本計數原理
橢圓定義在解題中的應用
基本算法語句