第1時
1.1.1平面直角坐標系(一)
學習目標
1.回顧在平面直角坐標系中刻畫點的位置的方法.
2. 能夠建立適當的直角坐標系,解決數學問題.
學習過程
一、學前準備
1、通過直角坐標系,平面上的 與 ( ),曲線與 建立了聯系,實現了 。
2、閱讀P3思考得出在直角坐標系中解決實際問題的過程是:
二、新導學
◆探究新知(預習教材P1~P4,找出疑惑之處)
問題1:如何刻畫一個幾何圖形的位置?
問題2:如何創建坐標系?
問題3:(1).如何把平面內的點與有序實數對(x,y)建立聯系?(2).平面直角坐標系中點和有序實數對(x,y)是怎樣的關系?
問題4:如何研究曲線與方程間的關系?結合本例子說明曲線與方程的關系?
問題5:如何刻畫一個幾何圖形的位置?
需要設定一個參照系
(1)、數軸 它使直線上任一點P都可以由惟一的實數x確定
(2)、平面直角坐標系 :在平面上,當取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標系。它使平面上任一點P都可以由惟一的實數對(x,y)確定
(3)、空間直角坐標系 :在空間中,選擇兩兩垂直且交于一點的三條直線,當取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標系。它使空間上任一點P都可以由惟一的實數對(x,y,z)確定
(4)、抽象概括:在平面直角坐標系中,如果某曲線C上的點與一個二元方程f(x,y)=0的實數解建立了如下的關系:A.曲線C上的點坐標都是方程f(x,y)=0的解;B.以方程f(x,y)=0的解為坐標的點都在曲線C上。那么,方程f(x,y)=0叫作曲線C的方程,曲線C叫作方程f(x,y)=0的曲線。
問題6:如何建系?
根據幾何特點選擇適當的直角坐標系。
(1)如果圖形有對稱中心,可以選對稱中心為坐標原點;
(2)如果圖形有對稱軸,可以選擇對稱軸為坐標軸;
(3)使圖形上的特殊點盡可能多的在坐標軸上。
◆應用示例
例1.已知△ABC的三邊 滿足 ,BE,CF分別為AC,AB上的中線,建立適當的平面直角坐標系探究BE和CF的位置關系。(教材P4例1)
◆反饋練習
1.兩個定點的距離為6,點到這兩個定點的距離的平方和為26,求點的軌跡。
解:
三、總結提升
◆本節小結
1.本節學習了哪些內容?
答:建立適當的直角坐標系,解決數學問題
學習評價
一、自我評價
你完成本節導學案的情況為( )
A.很好 B.較好 C. 一般 D.較差
后作業
1. 已知點A為定點,線段BC在定直線 上滑動,已知 ,點A到直線 的距離為3,求△ABC的外心的軌跡方程。
2. (選做題)用兩種以上的方法證明:三角形的三條高線交于一點。
本文來自:逍遙右腦記憶 /gaoer/34296.html
相關閱讀:函數的和差積商的導數學案練習題
橢圓定義在解題中的應用
合情推理
基本算法語句
基本計數原理