歡迎來到記憶方法網-免費提供各種記憶力訓練學習方法!

用二分法求方程的近似解

編輯: 路逍遙 關鍵詞: 高一 來源: 記憶方法網
學習目標
1. 根據具體函數圖象,能夠借助計算器用二分法求相應方程的近似解;
2. 通過用二分法求方程的近似解,使學生體會函數零點與方程根之間的聯系,初步形成用函數觀點處理問題的意識.
舊知提示 (預習教材P89~ P91,找出疑惑之處)
復習1:什么叫零點?零點的等價性?零點存在性定理?
對于函數 ,我們把使 的實數x叫做函數 的零點.
方程 有實數根 函數 的圖象與x軸 函數 .
如果函數 在區間 上的圖象是連續不斷的一條曲線,并且有 ,那么,函數 在區間 內有零點.
復習2:一元二次方程求根公式? 三次方程? 四次方程?
合作探究
探究:有12個小球,質量均勻,只有一個是比別的球重的,你用天平稱幾次可以找出這個球的,要求次數越少越好.
解法:第一次,兩端各放 個球,低的那一端一定有重球;
第二次,兩端各放 個球,低的那一端一定有重球;
第三次,兩端各放 個球,如果平衡,剩下的就是重球,否則,低的就是重球.
思考:以上的方法其實這就是一種二分法的思想,采用類似的方法,如何求 的零點所在區間?如何找出這個零點?

新知:二分法的思想及步驟
對于在區間 上連續不斷且 <0的函數 ,通過不斷的把函數的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫二分法(bisection).
反思: 給定精度ε,用二分法求函數 的零點近似值的步驟如何呢?
①確定區間 ,驗證 ,給定精度ε;
②求區間 的中點 ;[高考資源網]
③計算 : 若 ,則 就是函數的零點; 若 ,則令 (此時零點 ); 若 ,則令 (此時零點 );
④判斷是否達到精度ε;即若 ,則得到零點零點值a(或b);否則重復步驟②~④.
典型例題
例1 借助計算器或計算機,利用二分法求方程 的近似解.
練1. 求方程 的解的個數及其大致所在區間.

練2.求函數 的一個正數零點(精確到 )
零點所在區間中點函數值符號區間長度

練3. 用二分法求 的近似值.

課堂小結
① 二分法的概念;②二分法步驟;③二分法思想.
知識拓展
高次多項式方程公式解的探索史料
在十六世紀,已找到了三次和四次函數的求根公式,但對于高于4次的函數,類似的努力卻一直沒有成功,到了十九世紀,根據阿貝爾(Abel)和伽羅瓦(Galois)的研究,人們認識到高于4次的代數方程不存在求根公式,亦即,不存在用四則運算及根號表示的一般的公式解.同時,即使對于3次和4次的代數方程,其公式解的表示也相當復雜,一般來講并不適宜作具體計算.因此對于高次多項式函數及其它的一些函數,有必要尋求其零點近似解的方法,這是一個在計算數學中十分重要的課題.
學習評價
1. 若函數 在區間 上為減函數,則 在 上( ).
A. 至少有一個零點 B. 只有一個零點
C. 沒有零點 D. 至多有一個零點
2. 下列函數圖象與 軸均有交點,其中不能用二分法求函數零點近似值的是( 。.

3. 函數 的零點所在區間為( ).
A. B. C. D.
4. 用二分法求方程 在區間[2,3]內的實根,由計算器可算得 , , ,那么下一個有根區間為 .
課后作業
1.若函數f(x)是奇函數,且有三個零點x1、x2、x3,則x1+x2+x3的值為(  )
A.-1     B.0 C.3 D.不確定
2.已知f(x)=-x-x3,x∈[a,b],且f(a)?f(b)<0,則f(x)=0在[a,b]內(  )
A.至少有一實數根 B.至多有一實數根
C.沒有實數根 D.有惟一實數根
3.設函數f(x)=13x-lnx(x>0)則y=f(x)(  )
A.在區間1e,1,(1,e)內均有零點 B.在區間1e,1, (1,e)內均無零點
C.在區間1e,1內有零點;在區間(1,e)內無零點[高考資源網]
D.在區間1e,1內無零點,在區間(1,e)內有零點
4.函數f(x)=ex+x-2的零點所在的一個區間是(  )
A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)
5.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內,則m的取值范圍是(  )
A.m≤1 B.01 D.06.函數f(x)=(x-1)ln(x-2)x-3的零點有(  )
A.0個 B.1個 C.2個 D.3個
7.函數y=3x-1x2的一個零點是(  )
A.-1 B.1 C.(-1,0) D.(1,0)
8.函數f(x)=ax2+bx+c,若f(1)>0,f(2)<0,則f(x)在(1,2)上零點的個數為(  )
A.至多有一個 B.有一個或兩個 C.有且僅有一個 D.一個也沒有
9.根據表格中的數據,可以判定方程ex-x-2=0的一個根所在的區間為(  )
x-10123
ex0.3712.727.3920.09
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)

本文來自:逍遙右腦記憶 /gaoyi/75345.html

相關閱讀:函數
幾類不同增長的函數模型
二次函數性質的再研究
分數指數冪、分數指數
蘇教版高中數學必修1全套學案


国内精品久久久久久久亚洲